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A non-stationary subdivision scheme for
curve interpolation
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Abstract

We present a non-stationary subdivision scheme for inter-
polating a set of given data points. The scheme is a generali-
sation of the four point subdivision scheme of Dyn and Levin
to the non-stationary case. This scheme reproduces elements
of the linear space spanned by 1, cos(αx) and sin(αx) . More-
over if the initial data lies on a C2(R) function, then the limit
function of the scheme approximates the original function
quadratically.
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1 Introduction

Subdivision schemes are important and efficient tools for generat-
ing curves and surfaces iteratively from a finite set of points. Ini-
tially subdivision procedures were used to construct uniform and
non-uniform B-spline curves. Now they have become a subject of
study in their own right with a variety of applications. For exam-
ple [8], through the theory of multiresolution analysis, subdivision
can be used to create functions such as wavelets that have no an-
alytic forms. Recently subdivision schemes have been applied to
solve problems in fluid flow [9].

Each subdivision scheme is associated with a mask [2, 3] and
is called stationary if the same mask is used in each step of the
iteration. However, interest has been growing in non-stationary
schemes.

The objective of the present work is to develop a non-stationary
binary subdivision scheme whose limit curve interpolates a given
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set of data points. The scheme is a generalisation of a well-known
interpolatory subdivision scheme by Dyn and Levin [4] (also by
Dubuc [1]). Our scheme reproduces the elements of the linear space
spanned by 1, cos(αx) and sin(αx) . This scheme can also be used
to approximate smooth functions effectively.

The paper is organised as follows. In Section 2 some definitions
and known results about non-stationary subdivision schemes are
presented. In Section 3 our new subdivision scheme is introduced
and its convergence is studied. Some geometric properties of the
basic limit functions are presented in Section 4. In Section 5 we
show that the scheme reconstructs a certain class of trigonometric
polynomials. Finally, the quadratic order of approximation of the
limit function is shown in Section 6.

2 Preliminaries and definitions

We present some previously established definitions and results on
subdivision schemes which are used in what follows.

Given a set of control points P 0 = {pi ∈ Rd | i ∈ Z} at level 0,
a subdivision scheme {Sak

}k≥1 generates a new set of control points
P k = {pk

i | i ∈ Z} at the kth level by a subdivision rule:

pk
i = (Sak

P k−1)i = (Sak
Sak−1

· · ·Sa1P
0)i =

∞∑
j=1

a
(k)
i−2jp

k−1
j , i ∈ Z

where the set {a(k)
i | i ∈ Z , a

(k)
i 6= 0} is finite for every k ∈ N . It is

sufficient to study the subdivision scheme for the initial points p0
i ∈

R as the subdivision scheme is applied componentwise.

The set a(k) := {a(k)
i | i ∈ Z} of coefficients is called the mask at

the kth level of the subdivision scheme. If the mask is independent
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of k, then the scheme is called stationary, otherwise it is called
non-stationary. To each subdivision scheme {Sak

} defined by the
mask {ak

i }k≥1 , we assign the polynomial

ak(z) =
∑
i∈Z

a
(k)
i zi , , k ≥ 1

called the kth level characteristic polynomial of the algorithm.

For k = 0, 1, . . . the points pk
i , i ∈ Z are assigned to the mesh

points 2−kj , j ∈ Z respectively.

Definition 1 [3] A subdivision scheme {Sak
} is said to be Cm if for

every initial data P 0 ∈ l∞ there exists a limit function f ∈ Cm(R)
such that

lim
k→∞

sup
α∈Z

|P k
α − f(2−kα)| = 0

and f 6= 0 for some initial data P 0 .

Definition 2 [3] Let a(k) be the mask at the kth level of the subdi-

vision scheme {Sak
} . Then the set {i ∈ Z | a

(k)
i 6= 0} is called the

support of the mask a(k) .

Definition 3 [3] Two subdivision schemes {Sak
} and {Sbk

} are
asymptotically equivalent if

∞∑
k=1

‖Sak
− Sbk

‖∞ < ∞

where ‖Sak
‖∞ = max{

∑
α∈Z |a

(k)
2α |,

∑
α∈Z |a

(k)
2α+1|} .

The following result [3] relates the convergence of a non-station-
ary scheme to its asymptotically equivalent stationary scheme.
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Theorem 4 Let {Sak
} and {Sa} be two asymptotically equivalent

subdivision schemes having finite masks of the same support. Sup-
pose {Sak

} is non-stationary and {Sa} is stationary. If {Sa} is Cm

and
∞∑

k=0

2mk
∥∥Sak

− Sa

∥∥
∞ < ∞

then the non-stationary scheme {Sak
} is Cm .

3 The subdivision scheme

Define a space of trigonometric polynomials T by

T := span{1, c(x), s(x), c(2x), s(2x)} ,

where c(x) = cos(αx) and s(x) = sin(αx) for some α such that 0 ≤
α < π .

Let g ∈ T and g(x) = a0 + a1c(x) + a2s(x) + a3c(2x) + a4s(2x) .
Then the sum a2

3 + a2
4 is called the amplitude of g.

Suppose we have a data set

D = {(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), (x3, f(x3))} .

Then there exist several functions in T interpolating the data set D.
But it is known [6] that the function

L(x) =
3∑

j=0

f(xj)Lj(x)

where

Lj(x) = c

(
x− xj

2

) 3∏
k=0, k 6=j

s(x−xk

2
)

s(
xj−xk

2
)
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is a unique function in T which interpolates D and has the min-
imum amplitude among other interpolants from T . We call the
function L(x) a Lagrange-like interpolant of the above data.

Define xj = j, j = 0, 1, 2, 3 and x′ = 3/2 , then

L0(x
′) = L3(x

′) = − sin2(α/4)

2 sin(α/2) sin(α)
,

L1(x
′) = L2(x

′) =
sin2(3 α/4)

2 sin(α/2) sin(α)
.

Clearly
sin2(3α/4)

sin(α/2) sin(α)
− sin2(α/4)

sin(α/2) sin(α)
= 1 .

Let w0 = sin2(α/4)/[2 sin(α/2) sin α] , then

1

2
+ w0 =

sin2(3α/4)

2 sin(α/2) sin α

and

L(x′) = −w0[f(x0) + f(x3)] +

(
1

2
+ w0

)
[f(x1) + f(x2)] .

To define our non-stationary scheme, for k ≥ 0 , we denote

wk =
sin2( α

2k+2 )

2 sin( α
2k ) sin( α

2k+1 )
=

1

16 cos2( α
2k+2 ) cos( α

2k+1 )
. (1)

Some estimates of wk which are useful in our scheme are given
in the following lemma.

Lemma 5 For k ≥ 0 and 0 ≤ α ≤ π/2 :

1. 1
8
≥ wk ≥ 1

16
;

2. |wk − 1
16
| ≤ C/22k for some constant C independent of k.
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Proof: The inequality wk ≥ 1
16

follows directly from (1). Observe
that

wk =
1

16 cos2( α
2k+2 ) cos( α

2k+1 )
≤ 1

8
(
cos2( α

2k+1 ) + cos( α
2k+1 ) Bigr)

≤ 1

8

since cos2(x) + cos(x) > 1 for all x ∈ [0, π/4] . This proves 1. Also
note that

wk −
1

16
=

1

16

(1− cos2( α
2k+2 ) cos( α

2k+1 )

cos2( α
2k+2 ) cos( α

2k+1 )

)

=

(
2 + cos( α

2k+1 )
)

sin2( α
2k+2 )

16 cos2( α
2k+2 ) cos( α

2k+1 )

≤ 3α2

16 cos2(α/4) cos(α/2)

1

22k+4
.

The lemma follows by choosing C = α2/
(
cos2(α/4) cos(α/2)

)
. ♠

We now present the basic algorithm which is a non-stationary sub-
division scheme.

Algorithm: Given control points {p0
i ∈ R | i = −2,−1, . . . , n +

2} , the control points {pk+1
i | i = −2,−1, 0, . . . , 2k+1n + 1} at

level k + 1 are given by the following recursive relation:

pk+1
2i = pk

i , −1 ≤ i ≤ 2kn + 1 ;

pk+1
2i+1 = −wkp

k
i−1 + (

1

2
+ wk)p

k
i + (

1

2
+ wk)p

k
i+1 − wkp

k
i+2 ,

− 1 ≤ i ≤ 2kn .

Remark: If we take wk = 1
16

for all k, then this scheme coincides
with Dyn and Levin’s four point subdivision scheme [1, 4]. The
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point ((2i + 1)/2k+1, pk+1
2i+1) lies on the Lagrange-like interpolant of

the points{
(
i− 1

2k
, pk

i−1), (
i

2k
, pk

i ), (
i + 1

2k
, pk

i+1), (
i + 2

2k
, pk

i+2)

}
.

Note that the set of points at the (k + 1)th level of the algo-
rithm contains all the points at the kth level and some new points.
Therefore the initial set of control points is contained at all levels
of the algorithm. Therefore the limit curve interpolates the set of
initial points.

Let us denote our non-stationary scheme by {Sk} . The mask

of {Sk} at the kth level is a(k) = {a(k)
−3, . . . , a

(k)
3 } where

a
(k)
−3 = a

(k)
3 = −wk , a

(k)
−2 = a

(k)
2 = 0 ,

a
(k)
0 = 1 , a

(k)
−1 = a

(k)
1 = 1/2 + wk .

Note that the subdivision operator S associated with the four point
scheme of Dyn and Levin has the mask a = {a−3, . . . , a3} where

a−3 = a3 = − 1

16
, a−2 = a2 = 0 , a0 = 1 , a−1 = a1 =

9

16
.

Below we establish the asymptotic equivalence of {Sk} and {S} .

Theorem 6 The non-stationary scheme {Sk} is asymptotically equiv-
alent to the stationary scheme {S} . Moreover, the limit function
belongs to C1(R) .

Proof: We have∑
β∈Z

|a(k)
2β − a2β| = 0 and

∑
β∈Z

|a(k)
1+2β − a1+2β| = 4|wk − 1/16| .
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By Lemma 5, Part 2, we get
∑

β∈Z |a
(k)
1+2β − a1+2β| ≤ 4C

22k and hence

∥∥Sk − S
∥∥ ≤ 4C

22k
.

Hence
∑∞

k=0 ‖Sk − S‖∞ < ∞ and the schemes {Sk} and {S} are
asymptotically equivalent. It is clear that

∞∑
k=0

2k
∥∥Sk − S

∥∥
∞ < ∞ .

As the scheme associated with S is C1 , then by Theorem 4 the
scheme {Sk} is also C1 . This proves the theorem. ♠

4 Basic limit function

The basic limit function of the scheme {Sk} is the limit function of
the scheme for the data

p0
i =

{
1 , i = 0 ,

0 , i 6= 0 .

By Theorem 6, the basic limit function denoted below by F belongs
to C1(R) . In this section we derive some basic properties of the
basic limit function F . Let

Dn := {j/2n | j ∈ Z} .

It is easy to check that restriction of F to Dn satisfies F ( j
2n ) = pn

j

for all j.

Theorem 7 F is symmetric about the Y -axis.
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Proof: We prove this by induction on n. First of all F ( j
2n ) =

F (− j
2n ) for n = 0 since F (j) = F (−j) = 0 , j ∈ Z , by the

interpolation property. Assume that F ( j
2k ) = F (− j

2k ) , j ∈ Z ,

k = 1, 2, . . . , n . Therefore F ( 2j
2n+1 ) = F (− 2j

2n+1 ) for all j. Moreover,

F

(
2j + 1

2n+1

)
= −wnF

(
j − 1

2n

)
+ (1/2 + wn)F

(
j

2n

)
+ (1/2 + wn)F

(
j + 1

2n

)
− wnF

(
j + 2

2n

)
= −wnF

(
−j + 1

2n

)
+ (1/2 + wn)

[
F

(
−j

2n

)
+ F

(
−j − 1

2n

)]
− wnF

(
−j − 2

2n

)
= F

(
−2j + 1

2n+1

)
.

Hence F ( j
2n ) = F (− j

2n ) for all j and n ∈ Z . From the continuity
of F we have F (x) = F (−x) for all x ∈ R which completes the proof
of the theorem. ♠

The translation F (· − k), k ∈ R of F is the limit function of the
scheme for the initial data

p0
i =

{
1 , i = k ,

0 , i 6= k .

Next we show that F is a compactly supported function with
support in [−3, 3] , see Figures 1 and 2.

Theorem 8 The basic limit function F vanishes outside [−3, 3] .
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Figure 1: Basic limit functions: (a) for α = 0.25 and (b) for α =
0.5 respectively.
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Figure 2: Basic limit functions: (a) for α = 1.0 and (b) for α = 2.5
respectively.
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Proof: Take t0 = 0 and define tn recursively by tn+1 = tn + 3
2n+1 .

Observe that tn ∈ Dn but tn 6∈ Dn−1 . We claim that the restriction
of F to Dn vanishes outside [−tn, tn] . Since F is symmetric it is
enough to prove that F vanishes outside [0, tn] . We prove this by
induction on n. Observe that

F

(
tn+1 +

2 k

2n+1

)
= F

(
tn +

2k + 3

2n+1

)
= −wn

[
F

(
tn +

k

2n

)
+ F

(
tn +

k + 3

2n

)]
+ (1/2 + wn)

[
F

(
tn +

k + 1

2n

)
+ F

(
tn +

k + 2

2n

)]
(2)

and

F

(
tn+1 +

2k + 1

2n+1

)
= F

(
tn +

k + 2

2n

)
. (3)

From the above mentioned equation it is easy to check that F (t1) =
−w0F (0) 6= 0 and for k > 0

F

(
t1 +

2k − 1

2

)
= 0 and F

(
t1 +

2k

2

)
= 0 .

This proves our claim for n = 1 .

Assume F (x) = 0 whenever x ∈ Dn and x > tn . Then by (2)
and (3) we get F (tn+1) = −wnF (tn) 6= 0 and for k > 0 we have
F (tn+1 + 2k

2n+1 ) = 0 and F (tn+1 + 2k−1
2n+1 ) = 0 . Since [−tn, tn] is

contained in [−3, 3] for all n and lim
n→∞

[−tn, tn] = [−3, 3] we have the

required result. ♠
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Remark: Since F is compactly supported and continuous on R,
it follows that F (· − k) are also compactly supported continuous
functions. If y(t) is the limit function interpolating the initial se-
quence {y(n)} , then

y(t) =
∑
j∈Z

y(j)F (t− j) =
k+3∑

j=k−2

y(j)F (t− j)

where k is the greatest integer such that k ≤ t .

5 Reconstruction of functions

In this section we show that certain functions can be reconstructed
by our scheme. It is easy to check that if pk

i = 1 for all i at the
kth level then pk+1

j = 1 for all j at the (k + 1)th level. This shows
that the function f(x) = 1 is reproduced by our scheme. Another
simple consequence is∑

k∈Z

F (t− k) = 1 , t ∈ R . (4)

Therefore the translations of the basic limit function F form a par-
tition of unity.

The functions cos(αx) and sin(αx) can also be reconstructed by
our scheme which follows from the next lemma.

Lemma 9 Let k ≥ 0 and n > 0 be fixed integers. Let pk
j =

cos(j α
2k ) , −2 ≤ j ≤ 2kn + 2 . Then we have for −1 ≤ i ≤ 2kn ,

pk+1
2i = cos

(
2iα

2k+1

)
and pk+1

2i+1 = cos
(
(2i + 1)

α

2k+1

)
.
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Similarly, if pk
j = sin(j α

2k ) , then for −1 ≤ i ≤ 2kn ,

pk+1
2i = sin

(
2iα

2k+1

)
and pk+1

2i+1 = sin
(
(2i + 1)

α

2k+1

)
.

Proof: We present the proof of the first part and the proof of the
second part follows by a similar argument. Note that

pk+1
2i = pk

i = cos
(
i
α

2k

)
= cos

(
2i

α

2k+1

)
and

pk+1
2i+1 = −wk

(
pk

i−1 + pk
i+2

)
+ (1/2 + wk)

(
pk

i + pk
i+1

)
.

Since

1

2
+ wk =

sin2(3 α
2k+2 )

2 sin( α
2k+1 ) sin( α

2k )
,

pk
i + pk

i+1 = 2 cos
(
(2i + 1)

α

2k+1

)
cos

( α

2k+1

)
and

pk
i−1 + pk

i+2 = 2 cos
(
(2i + 1)

α

2k+1

)
cos

(
3

α

2k+1

)
,

we get

pk+1
2i+1 =

[ −2 sin2( α
2k+2 )

2 sin( α
2k+1 ) sin( α

2k )
cos

(
3

α

2k+1

)
+

2 sin2(3 α
2k+2 )

2 sin( α
2k+1 ) sin( α

2k )
cos

( α

2k+1

)]
cos

(
2i + 1

2

α

2k

)
=

2 sin( α
2k+1 ) sin( α

2k )

2 sin( α
2k+1 ) sin( α

2k )
cos

(
2i + 1

2

α

2k

)
= cos

(
(2i + 1)

α

2k+1

)
.
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Figure 3: (a): Points on the unit square, (b): The limit curve after
the third iteration.

This proves the lemma. ♠

Corollary 10 If the initial data lie on a graph of a function f ∈ T
and the values of f are given on a set of equidistant points then
the limit function of the non-stationary subdivision scheme exactly
reproduces the original function f . In particular if we choose a set
of equidistant points

p0
i =

(
cos

(
k
2π

n

)
, sin

(
k
2π

n

))
, k = 0, 1, . . . , n

on a circle, and α = 2π/n , then the limit curve is the original unit
circle (see Figure 3).
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6 Order of approximation

Finally, we present a result on the order of approximation of our
interpolation scheme. To state the basic approximation theorem,
we assume that for a fixed n ∈ N let h = 1

n
and I = [−2h, 1 + h] .

Suppose that g is a C2(I) function defined on I and

p0
i = g(ih) , −2 ≤ i ≤ n + 2.

The basic approximation theorem states that the limit function ob-
tained by the above non-stationary scheme with the data g(ih) ,
−2 ≤ i ≤ n + 2 approximates g(t) with an error of O(h2) . We now
state the theorem precisely.

Theorem 11 Let p0
i = g(ih) , −2 ≤ i ≤ n + 2 , h = 1/n . Let

f be the limit function of the non-stationary interpolatory scheme.
If g ∈ C2(I) then there exists a constant C such that

‖f − g‖∞,[0,1] := max
0≤x≤1

|f(x)− g(x)| ≤ C
h2

cos(5αh/2)
. (5)

Proof: Define the compactly supported functions Bi , i ∈ Z by

Bi(x) := F (
x

h
− i) , i ∈ Z ,

where F is the basic limit function of the nonstationary scheme.
By (5) ∑

i∈Z

Bi(x) = 1, ∀x ∈ I.

Denote the interval [ih, jh] by Ii,j . Then for x ∈ Ik,k+1 , by (4), we
have

f(x) =
k+3∑

i=k−2

p0
i Bi(x) =

k+3∑
i=k−2

g(ih)Bi(x) .
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Define

Q(x) =
sin(α((k + 3)h− x))

sin(5αh)
p0

k−2 +
sin(α(x− (k − 2)h))

sin(5αh)
p0

k+3 .

It is easy to check that Q ∈ T and hence by Corollary 10 and (4),
for x ∈ Ik−2,k+3 we get

Q(x) =
k+3∑

i=k−2

Q(ih)F
(x

h
− i

)
.

Koch [5] showed that if g ∈ C2(I) then there exists a constant C1

depending only upon g such that

∥∥Q− g
∥∥
∞,Ik−2,k+3

≤ C1
h2

cos(5α/2)
.

Moreover, we have

∥∥f −Q
∥∥
∞,Ik,k+1

=
∥∥ k+3∑

j=k−2

g(jh)Bj(x)−
k+3∑

j=k−2

Q(jh)Bj(x)
∥∥
∞,Ik,k+1

≤ 5 max
k−2≤j≤k+3

∥∥Bj(x)
∥∥
∞,Ik−2,k+3

∥∥Q− g
∥∥
∞,Ik−2,k+3

.

Since the basic limit functions Bj(x) , j ∈ Z are bounded functions
we have∥∥f − g

∥∥
∞,Ik,k+1

≤
∥∥f −Q

∥∥
∞,Ik,k+1

+
∥∥Q− g

∥∥
∞,Ik,k+1

≤ max
{

5
∥∥Bj(x)

∥∥
∞,Ik,k+1

+ 1
}

C1
h2

cos(5αh/2)
.

This completes the proof of the theorem. ♠
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7 Discussion

Some recently developed schemes generate functions spanned by
sines and cosines, and reproduce circles. By using a mixed set
of polynomials and trigonometric basis elements, Zhang [10] in-
troduced C-Bezier and C-spline curves. He also presented a non-
stationary subdivision scheme for C-spline curves which is capable
of reproducing circles and generating arcs of ellipses. These types
of problems have been solved mostly using Non Uniform Rational
B-splines. However, our scheme and the scheme for the C-splines
approach this problem in two different ways. The scheme introduced
in [10] for C-splines is C2; however, unlike our C1 scheme it is not
interpolatory. Besides, our scheme in view of its interpolatory and
local nature has distinct advantages. Moreover, formulas entering
into our scheme are quite simple. The non-stationary C2 scheme
introduced in [7] unifies the known subdivision schemes for cubic
B-splines and the scheme introduced in [10]. However, it is again
not interpolatory.

Our subdivision scheme can be naturally used for the design of
interpolatory surfaces using a tensor product approach. Further
generalisation of this scheme for generating surfaces from arbitrary
meshes is a different issue and is beyond the scope of this paper.

Acknowledgement: We thank the referee for comments which
helped us to improve the content and the presentation of the paper.
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