ANZIAM J. 44 (E) ppE236-E254, 2003 E236

A parallel algorithm to find the zeros of a
complex analytic function.

Michael H. Meylan® Lutz Gross'

(Received 2 February 2002; revised 15 December 2002)

Abstract

Motivated by the general non-linear eigenvalue problem,
we present a parallel algorithm to find the zeros of a com-
plex analytic function in a given region. The algorithm is
based on a two dimensional version of the bisection algo-
rithm and is implemented in parallel using a master-slaves
programming model. The master is responsible for organis-
ing the slaves while the slaves are responsible for determin-
ing if a given region contains any zeros. The results from
the test calculations show that this algorithm achieves good
efficiency provided that the number of processors does not
exceed four time the number of zeros in the initial region.

*Institute of Information and Mathematical Sciences, Massey University,
Private Bag 102-904 NSMC, Auckland, NEW ZEALAND.
mailto:M.H.Meylan@massey.ac.nz

"Mathematical and Information Sciences, CSIRO, Private Bag 10, Clayton
South, Victoria, AUSTRALIA

9See http://anziamj.austms.org.au/V44/E036 for this article, (©) Austral.
Mathematical Soc. 2003. Published February 20, 2003 ISSN 1446-8735

mailto:M.H.Meylan@massey.ac.nz
http://anziamj.austms.org.au/V44/E036

Contents E237

Contents
1 Introduction E237

2 Motivation: The non-linear eigenvalue problem. E239

3 The search algorithm E240
3.1 Determining the change in argument E241
3.2 Determining when to use the secant method . . . E244

4 Implementation in parallel E245

5 Efficiency E246

6 Examples E247
6.1 Example: f(A)=sin(A) E247
6.2 Example: A polynomial with clustered zeroes . . K250
6.3 Example: Increasing the number of sub-squares . FE250
6.4 Example: Vibrations of a floating thin plate . . . FE252

7 Summary E252

References E253

1 Introduction

In this paper we present a method to determine the zeros of a com-
plex analytic function in a given bounded region S. The method,
which is based on elementary results from complex analysis, is very
robust and will find every zero within the given region for a very
large class of functions. For this robustness a high computational
price must be paid and for this reason we have designed the algo-

1 Introduction E238

rithm to run on a parallel computer.

There are many possible reasons why one might wish to find the
zeros of a complex analytic function. However, most zero search
algorithms tend to be either more specialised, for example finding
the zeros of a polynomial, or more general, for example finding the
zeros of an arbitrary system of functions. The motivation for the
present work is the most general form of the non-linear eigenvalue
problem in which the matrix is an arbitrary value of the eigenvalue
parameter.

There are many algorithms to determine the zeros of specific
analytic functions. The best known are the iterative methods to
find the eigenvalues of a square matrix. The idea of using com-
plex variable theory to find the zeros of a polynomials has been
proposed several times [1, 2, e.g.|. However the current method
used by programs such as MATLAB is based on rewriting the poly-
nomial problem as a matrix eigenvalue problem. Recent research
on the nonlinear eigenvalue problem has concentrated on extending
the existing methods to problems of only slightly greater complex-
ity, such as the quadratic eigenvalue problem [3]. However, there
are some cases in which the non-linear eigenvalue problem is of full
complexity [4] and we are faced with finding the eigenvalues of a
matrix which is an arbitrary function of the eigenvalue parameter.
By taking the determinant of this matrix we can pose this problem
as one of finding the zeros of an analytic function.

The method which we present to find the zeros of a complex
analytic function is based the on following result from elementary
complex variable theory. The variation of the argument of the an-
alytic function around the boundary of a region is 27 times the
number of zeros within the region (since there are no singularities
within the region). The algorithm is a simple generalisation of the
bisection algorithm for functions of a real variable. At each step of

2 Motivation: The non-linear eigenvalue problem. E239

the iteration the region is subdivided and each subregion is searched.
If the subregion contains a zero it is further subdivided and the pro-
cess is repeated. Furthermore, this algorithm is implemented to run
on a parallel computer using a master-slaves programming model.

2 Motivation: The non-linear
eigenvalue problem.

The present work is motivated by trying to solve the non-linear
eigenvalue problem in its most general form.

The linear eigenvalue problem can be written as the problem
of finding the values of A for which the following complex analytic
function

F () = det [M — |

is zero (M is a real or complex square matrix and I is the identity
matrix of the same size as M).

In the non-linear eigenvalue problem the parameter A\ appears
in a more complicated manner in the matrix. In the most general
nonlinear eigenvalue problem we must find the values A for which

f(A) = det [M(M)] =0

where the matrix is an arbitrary analytic function of the parame-
ter A\. This kind of problem arises when modelling situations in-
volving complicated interactions, for example between a fluid and a
structure. Recently Meylan [4] showed that the modes of vibration
of a thin plate on shallow water could be determined by solving such
a generalised eigenvalue problem.

3 The search algorithm E240

State-of-the-art solution methods for solving the linear eigen-
value problem do not refer to the analytic function f directly but
transform M into a diagonal or nearly diagonal matrix. These meth-
ods cannot be applied to the general non-linear eigenvalue problem;
however, generalizations for the quadratic eigenvalue problem exist.
So in the general non-linear case one has to refer to the problem of
finding the roots of f. Of course this approach could be used for
the linear and quadratic case as well but one will expect to end up
with a less efficient method.

3 The search algorithm

The major difficulty in determining the zeros of a complex analytic
function f(\) is that it is not possible to use a rapid zero search
algorithm such as the Secant or Newton method because these meth-
ods require an initial starting guess which is close to the unknown
zero. The algorithm which we propose is a generalisation of the
well-known bisection algorithm to find roots of a real-valued func-
tion. It is extremely simple and robust but it requires extensive
computational resources.

The idea is as follows: The algorithm starts form an initial
square S with boundary 05 in the complex plane. It is assumed that
f is analytic in the square and in a neighbourhood of the square.
The search algorithm will try to find all the zeros of f (\) which lie
within this square S. In practice we generally seek the zeros with
some property, such as those with smallest magnitude, so that the
restriction to a bounded domain does not give any special problems.

Assuming that the square contains no zeros on its boundary, we
use the result that the number of zeros of f (\), which we denote
by N, that lie within the square is given by the variation Ayg of the

3 The search algorithm E241

argument of f anti-clockwise along the closed curve 95, that is

N = %Aas (arg f (N)) . (1)

If the square contains some zeros, which is indicated by N > 0, this
square is then subdivided into four squares and the search is carried
out in each of these squares.

In each step of this iterative process we have to search a set
of squares. The squares being found to contain a zero are further
subdivided. If a square does not contain a zero it is dropped. In the
unlikely event that all squares searched in an iteration step contain
at least one zero the number of squares to be considered in the next
step is increased by a factor of four. If there is only one single
square containing a zero, there are only four squares searched in the
next iteration step. A practical situation will lay between these two
extreme cases. Figure 1 illustrates the first four iterations of the
search method for an example problem with four zeros which are
marked with a cross.

3.1 Determining the change in argument

We discuss here the algorithm used to track the change in the argu-
ment of f. The change in argument along 0S is determined by eval-
uating f (\) at certain points around the boundary of the square:

We begin in a corner of the square. We evaluate the func-
tion f (A) at this point and determine the argument. We then con-
sider a point a distance d along a side of the square and evaluate the
argument at this point. If the change in argument (taking account
the flip from — to 7) is less than some value 6 we accept this new
point. If the change in argument is greater than 6 then we consider

3 The search algorithm E242

First iteration Second iteration

Third iteration Fourth iteration

FIGURE 1: Four iterations of the search algorithm for an example
problem. The four zeros are marked with a cross and the grey
denotes the regions which have been excluded after each iteration.

3 The search algorithm E243

a new point a distance d/2 along the square and test to see if the
change in argument is less than #. The halving is repeated until the
change in argument is less than 6. We then repeat the same process
starting at the last point we determined the argument. The process
stops when the entire boundary has been traversed and the initial
point has been reached. The value for change in argument is then
set to the change in the argument for the two values at the initial
point. Our tests show that the step size d can be set quite large
(half the side length of the square for example), while the change in
angle should be no greater than 7/10. For these values one achieves
a good balance for accuracy with minimising the numerical cost.

The algorithm is likely to fail if we have two or more zeros close
together which are close to the boundary. In this case the algorithm
can step right past the zeros with out picking up that there are in
fact two zeros or more. However, although the value for N returned
by the algorithm is smaller than the actual number of roots in .S, it
still return a positive value which is sufficient to decide that S has
to be subdivided.

A principle problem of the algorithm does occur when a zero
lays on or close to the boundary of the square. In this case it can
happen that a zero is not detected although the square contains a
zero. There is a way around this problem at only little extra costs:
one can increase the size of the initial square and of each sub-square
when the square is divided. This would give some overlap of the
sub-squares so that the zeros could not lie close to the boundary
of two squares. We suggest that in certain cases this may be the
preferred method, especially in situations where clustering of zeros
is likely to occur.

Obviously one could construct a function for which we would fail
to find a zero within the particular square, for example by choosing
the function to have value 1 at every point where we evaluate f ()

3 The search algorithm E244

around the square and yet to contain a zero within the square.
We consider these cases as unlikely to occur in practice. However,
one can reduce the risk of a failure of the algorithm by choosing
sufficiently small # and d or, which is more reliable by comparing
values for two different choices for 6 and d. Nevertheless, this will
not guarantee that a root in a square is detected.

3.2 Determining when to use the secant
method

Once a square contains one zero only and the square is small enough,
it is more efficient to use the secant or Newton method to improve
the accuracy of a zero to the desired tolerance. The principle prob-
lem is determining when we are close enough to the a zero in order
to switch to the secant or Newton method. In practice, we always
use the secant method because in a close neighborhood to the zero
its performance is close to that of the Newton method but has the
advantage that it does not require the evaluation of f' (). It is rea-
sonable to use the secant method immediately we have determined
that only one zero lies within the square since the secant method is
numerically cheap. If the secant method fails to converge to a zero
within the square, we switch back to the process of subdivision and
try the secant method on the sub-square which contains the zero.

As pointed out above, it can happened that the number of ze-
ros is underestimated. Therefore it can happen that the secant or
Newton method converges to a zero in a square but there are more
zeros in the square. However, continuing the subdivision strategy
would likely pick-up these zeros. Here the user has to make decision
between reliability and speed.

4 Implementation in parallel E245
4 Implementation in parallel

The major aim of our work is to implement the algorithm on a par-
allel computer. Our reason for this is that the calculation, especially
for large dimensional A()) is extremely computationally demand-
ing. Furthermore, the algorithm is well suited to parallelisation
since the tasks of searching the squares in a particular iteration are
independent and can therefore easily be executed in parallel. We
have implemented the most straightforward version of this algorithm
which works as follows.

We use a master-slaves programming model: one particular pro-
cess, called the master, organizes the work of the remaining slave
processors. The action of the slaves is the most straightforward.
Each slave is given the parameter of a square in the complex plane
in which it must determine the number of zeros using equation (1).
Once it has finalised this task it returns this information and waits
to be given a further task.

The master holds the table of the squares to be searched and
allocates squares to any slaves that are free. Once a slave has com-
pleted its calculation this information is used to update the job table
as follows: The processed square is removed from the table and, if
the square contained a zero, four new squares are added to the table.
After this up-dating step, the master allocates squares waiting to
free slaves until either there are no free slaves or no squares waiting
to be processed. In the case that there are more slaves than squares
to be processed there will be idle slaves. The algorithm terminates
when the zeros are determined to some given accuracy.

5 Efficiency E246

5 Efficiency

We will discuss the efficiency of our algorithm in the context of the
generalised bisection search. We will not consider issues that arise
when the algorithm includes the secant method. The major problem
with any optimal parallel algorithm is to ensure that the workload
is distribute equally across the available processors and that all pro-
cessors are kept busy. For our algorithm this means that we must
ensure that the slaves are working at all times. The most significant
idleness arises because the slaves cannot be allocated a job. Typi-
cally this situation occurs at the beginning of the iteration process
when we are dealing with a small number of squares. However, we
will not be able to generate enough jobs if the number of zeros in
the initial square is small. Once the iteration process has proceeded
through the initial interactions it can be expected that the sub-
squares to be processed are small enough to contain just one zero
each. As each sub-square will produce four new sub-squares to be
searched the number of jobs created for the next iteration step is 4x
number of zeros. Therefore, we expect that, in order to keep the
slaves busy, the number of jobs should be equal or greater than the
number of slaves we are using. This can be written as the following
condition:

4 x (number of zeros in 9S) < (number of slaves). (2)

Notice that we determine the number of zeros in the initial square
from equation (1).

In order to keep an arbitrary number of slaves busy one can
introduce a subdivision into a suitable number of squares (or more
general into rectangles) rather then four squares. The optimal num-
ber of squares could be determined by an equation similar to (2)
after the first iteration step.

6 Examples E247
6 Examples

We present here some example calculations. The examples where
calculated on a cluster of 16 500 MHz Pentiumiit PCs under LINUX.
The computers are linked through an 100 Mbit Ethernet switch. The
algorithm has been implemented in C++ using the Gnu compiler. In
all case the search is terminated once the side length is smaller
then 10~8x the modulus of the centre of the square and we do not
use the secant method at any point. To slow down the compute
time for each slave we determine the argument by evaluating the
function at 10,000 points around the square. This is because we do
not wish the total compute time to be dominated by communication
costs.

6.1 Example: f(A) = sin(\)

We begin by finding the zeros of f(\) =sin A. using various initial
squares. The results are shown in Table 1. The columns Ny and p
gives the number of roots in the initial square and the number of
slaves which have been used, respectively. The time taken is given
by 7, and is in seconds. The value 7 is the ratio of 7, and the
product of the number of slaves and time 77 when using one slave
only: if n is close to 1 we have achieved high efficiency; if 7 is close
to zero the efficiency is very poor. Note that we do not consider the
timing for the best possible algorithm for one processor which would
be the true efficiency. Also, there is some randomness in these tim-
ings which is typical of the communication randomness of parallel
algorithms. As explained previously, the process of determining the
number of zeros, which each slave must perform, has been slowed by
requiring a large number of function evaluations on the boundary
of the square. This is to ensure that there is a more typical load

6 Examples

centre

side length

No

T

p

n

(0,0)

4

1

—_

p
1
2
4
8

D

4.41
2.26
1.16
0.75
0.71

1
0.97
0.95
0.73
0.41

—_

1
2
4
8

>

10.19
5.88
3.02
1.42
1.03

1
0.87
0.84

0.9
0.66

16

5

—_

1
2
4
8

5

18.9
9.51
4.88
2.33
1.24

1
0.99
0.97
1.01
1.01

E248

TABLE 1: A table of times, 7}, to find the zeros of f(\) = sin()) in
the squares with centre and side lengths as shown. Ny is the number
of zeros in the square, p is the number of processors and 7 is the

efficiency.

6 Examples

centre side length n,k p T, n
(0,0) 1.99 50 1 30.2 1
2 155 0097
4 7.7 098
8 4.04 0.93
15 273 0.74
(0,0) 1.99 55 1 26.2 1
2 1311 1
4 6.55 1
8 362 09
15 256 0.68
(0,0) 1.99 510 1 20.12 1
2 10.33 097
4 514 0.98
8 272 0.92
15 22 0.61

E249

TABLE 2: A table of times, T, to find the zeros of a polynomial
with clustered zeros in the squares with centre and side lengths as
shown. The polynomial is defined by equation (3) and k and n are

parameters which define the polynomial. 7 is the efficiency.

balance for a practical problem, otherwise the communication time
would be dominant. The results in Table 1 show that the algorithm
retains a high efficiency provided that the number of processors is
no greater than four times the number of zeros. Once this thresh-
old is crossed, the efficiency drops significantly. This is exactly as

expected from equation (2).

6 Examples E250

6.2 Example: A polynomial with clustered
zeroes

In this example we consider the following polynomial

(- 2) gk (k) o

where k and n are integers. This zeros of this polynomial are clus-
tered and therefore we expect that the algorithm will lose efficiency
faster as the number of processors is increased than was the case for
the previous example. We consider an initial square has centre 0 and
side length 1.99 (to ensure that none of the zeros lie of the boundary
on the sub-squares). The number of roots n = 5 and k = 0,5,10.
The results are shown in Table 2. See from these results that, as
the clustering of zeros increases, there is a marked decrease in the
efficiency.

6.3 Example: Increasing the number of
sub-squares

One strategy to try and improve the speed when there is a large
number of processors available is to increase the number of sub-
squares. Table 3 shows the results for the calculation for f(\) =
sin A in the case when there is only one zero. The number of sub-
squares is 4, 9, and 16 respectively. Perhaps because of the increased
communication cost, the results shown that, even with 15 slaves
there is no efficiency gain to be made by increasing the number of
sub-squares.

6 Examples E251

T
4.41
2.26
1.16
0.75
0.71
6.16
3.4

1.76
1.01
0.83
9.49
4.89
2.5

1.39
1.00

centre side length Number of Sub-squares
(0,0) 4 4

— — —
Gr 00 B N | 00 R N Ry 00N RS

TABLE 3: A table of times, 7}, to find the zeros of f(\) = cos(\)
in the squares with centre and side length as shown. The number
of sub-squares used at each iteration is shown. p is the number of
Processors.

7 Summary E252

6.4 Example: Vibrations of a floating thin
plate

The final example is taken from [4] in which the zeros of the deter-
minant of the following matrix

[pye? ppeiet e e 0
5, —u1b 5,—u2b 5 —ueb
BV et S I
6)“‘1 elu'Q . 6”6 O O
M(A) = ﬂl— b ,u2_ b 'u6— b —iXb
e 258 e K12 e 1] —e 2 O
ule_ulb M26_,U'2b e /*[/66_#617 —Z)\G_Z/\b O
b b b —iA\b
et eh? e eto 0 —e
i Mleulb M2€/L2b L Iu6eu6b 0 i)\e—iAb

(1)
give the natural frequencies of the a floating thin plate on shal-
low water. In equation (4) p; to pg are the roots of the following
polynomial

Bub +u* + X =0. (5)
Table 4 shows the times taken to determine the zeros of det[M(\)] in
the square of side length 2 centered at (1,1). The algorithm shows
the good efficiency that would be expected for an initial region with
8 zeros.

7 Summary

Motivated by the most general nonlinear eigenvalue problems we
have presented a parallel algorithm to find the zeros of a complex
analytic function. This algorithm was based on a simple process
of subdivision. The algorithm was implemented in parallel using
a master-slaves programming model. As was expected, the results

References E253

centre side length Ny p T, n
(0.5,0.5) 1 8 1 16872 1
2 84.71 1
4 43.61 0.97
8 2193 0.96

15 10.29 1.09

TABLE 4: A table of times, 7, to find the zeros of det[M(\)]
where (M()) is given by equation (4). p is the number of processors
and 7 is the efficiency.

from the test calculations showed that this algorithm achieves good
efficiency provided that the number of processors does not exceed
four time the number of zeros in the initial region.

Acknowledgement: I appreciated the helpful comments of the
reviewer, especially the suggestion of enlarging the search squares
to avoid problems with zeros close to the boundary. This research
was supported in part by the Marsden Fund.

References

[1] H. S. Wilf, A global bisection algorithm for computing the
zeros of polynomials in the complex plane, J. Assoc.
Computing Machinery, 25(3), pp 414-420, 1978, E238

2] C. Caretensen and M. S. Petkovic, On iterative methods
without derivatives for the simultaneous determination of
polynomial zeros, J. Comp. & Appl. Math., 45, pp 251-266,
1993 E238

References E254

(3] Z. Bai, Demmel, J. Dongarra, A. Ruhe, H. Van der Vorst,
Templates for the solution of algebraic eigenvalue problems: a
practical guide, SIAM, Philadelphia, 2000. E238

[4] M. H. Meylan, Spectral solution of time dependent shallow
water hydroelasticity, J. Fluid Mechanics, 454, pp 387-402,
2002. E238, E239, E252

	Introduction
	Motivation: The non-linear eigenvalue problem.
	The search algorithm
	Determining the change in argument
	Determining when to use the secant method

	Implementation in parallel
	Efficiency
	Examples
	Example: f()=sin()
	Example: A polynomial with clustered zeroes
	Example: Increasing the number of sub-squares
	Example: Vibrations of a floating thin plate

	Summary
	References

