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An optimal battery interchange policy
for an electric car powered by a mobile

solar power station
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Abstract

The World Solar Challenge is a 3000 kilometre race from
Darwin to Adelaide, across the Australian continent, for so-
lar powered racing cars. Annesley College accompanied the
2001 event in an electric car powered by batteries. While
one battery was used to power the car another was charged
from a solar panel carried by a mobile solar power station.
When the first battery became empty the batteries were in-
terchanged and the first battery put on charge. The process
was repeated throughout the event. In this paper we find
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a policy for interchanging the batteries that maximises the
distance travelled each day.
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1 Introduction

Annesley College have been racing solar cars in the World Solar
Challenge since 1990. After the 1996 race the team decided that,
rather than building another solar car, they would develop a com-
muter car that could be powered from renewable solar energy. They
took a small conventional car and replaced the engine, transmission
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and petrol tank with an electric motor, fixed-ratio reduction drive
and a battery.

The car has a range of about 50 km, and would normally be
driven on short trips around town and then recharged using re-
newable energy from the electricity grid. The trip from Darwin to
Adelaide required the team to drive 300 km each day and generate
their own energy. To do this, the team used a large photovoltaic
array on the back of a truck to continually recharge spare batteries.
These batteries were periodically interchanged with the battery in
the car.

Our problem was to determine a battery interchange policy that
would maximise the distance travelled by the car each day.

2 Modelling the problem

We start each day at time t0 = 0 , and assume that at this time
the battery in the car contains energy E0 and the second battery
is empty. Battery packs will be swapped at times t1, t2, . . . , tn, to
be determined. The journey finishes each day at time tn+1 = T .
The aim is to find switching times 0 < t1 < t2 < · · · < tn <
T that maximise the distance travelled during the interval [0, T ] .
During each interval (ti−1, ti) we drive at a constant speed so that
the battery in the car becomes empty at time ti. We then swap
batteries and continue.

The power p required to hold a constant speed v is p = f(v)
where f : [0,∞) → [0,∞) is

f(v) = av + bv2 + cv3 ,
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Figure 1: The power required to maintain a constant speed is
positive, increasing and convex.

where a, b and c are known positive constants. An example is shown
is Figure 1.

The constant speed v that can be maintained with power sup-
ply p is v = ϕ(p) where ϕ : [0,∞) 7→ [0,∞) is given by ϕ(p) =
f−1(p) . Because f(v) is positive, increasing and convex with

f(0) = 0 and f ′(0) = a ,

it is clear that ϕ(p) is positive, increasing and concave with

ϕ(0) = 0 and ϕ′(0) = a−1 .

The total energy collected to time t is given by

E(t) = E0 +

∫
[0,t]

s(τ) dτ
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where s(τ) is the known solar power generated by the solar panel at
time τ . For convenience we write Ei = E(ti) and si = s(ti) for all
i = 0, . . . , n + 1 . We also write ∆E−1 = E0 and ∆Ei = Ei+1 − Ei

and ∆ti = ti+1 − ti for each i = 0, . . . , n + 1 .

The constant battery power used on the interval [ti, ti+1] depends
on the energy collected during the previous interval, and is

p̄i =
∆Ei−1

∆ti
.

The speed of the car on the interval [ti, ti+1] is

v̄i = ϕ(p̄i) .

3 An elementary bound for the total

distance

The distance travelled by the electric car on the interval [0, T ] is

x(t1, . . . , tn) =
n∑

i=0

v̄i∆ti = T
n∑

i=0

ϕ(p̄i)
∆ti
T

,

and from the concavity of ϕ(p) it follows that

x(t1, . . . , tn) ≤ Tϕ

(
n∑

i=0

p̄i
∆ti
T

)
= Tϕ

(
En

T

)
< Tϕ

(
E(T )

T

)
for all such subdivisions.

Theorem 1 The maximum distance XT travelled in the period [0, T ]
satisfies the inequality

XT < Tϕ

(
E(T )

T

)
. (1)
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4 Necessary conditions for a maximal

journey

To maximise the distance travelled we first calculate some deriva-
tives. For each i = 1, . . . , n− 1 we have

∂

∂ti
[ϕ(p̄i−1)∆ti−1 + ϕ(p̄i)∆ti + ϕ(p̄i+1)∆ti+1]

= ω(p̄i−1)− ω(p̄i) + [ϕ′(p̄i)− ϕ′(p̄i+1)]si ,

and

∂

∂tn
ϕ(p̄n−1)∆tn−1 + ϕ(p̄n)∆tn = ω(p̄n−1)− ω(p̄n) + ϕ′(p̄n)sn ,

where ω(p) = ϕ(p) − ϕ′(p)p . See that ω′(p) = −ϕ′′(p)p > 0
and hence ω(p) increases with p. Now it follows that for each
i = 1, . . . , n− 1 the equations

∂x(t1, . . . , tn)

∂ti
= 0 ,

can be rewritten in the form

ω(p̄i−1)− ω(p̄i) + [ϕ′(p̄i)− ϕ′(p̄i+1)]si = 0 ,

and the final equation

∂x(t1, . . . , tn)

∂tn
= 0 ,

gives
ω(p̄n−1)− ω(p̄n) + ϕ′(p̄n)sn = 0 .

We begin by considering this final equation. Since

ϕ′(p̄n)sn > 0 ,
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we deduce that ω(p̄n−1) < ω(p̄n) and, since ω(p) increases with p,
that p̄n−1 < p̄n . Since ϕ′(p) decreases when p increases the equation

ω(p̄n−2)− ω(p̄n−1) + [ϕ′(p̄n−1)− ϕ′(p̄n)]sn = 0 ,

shows us that ω(p̄n−2) < ω(p̄n−1) and hence that p̄n−2 < p̄n−1 .
By considering each of the other equations in turn we find that
p̄0 < p̄1 < p̄2 < · · · < p̄n .

Theorem 2 A necessary condition that x(t1, . . . , tn) is maximised
is that

ω(p̄i−1)− ω(p̄i) + [ϕ′(p̄i)− ϕ′(p̄i+1)]si = 0 (2)

for each i = 1, . . . , n− 1 and that

ω(p̄n−1)− ω(p̄n) + ϕ′(p̄n)sn = 0 . (3)

If these conditions are satisfied then the average power used on each
subinterval satisfies the inequalities

p̄0 < p̄1 < · · · < p̄n . (4)

5 The case in which solar power is

constant

If s(t) = S for all t ∈ [0, T ] then we can construct a simple numerical
procedure to calculate the solution. In this special case we have

p̄0 =
E0

∆t0
and p̄i =

S∆ti−1

∆ti

for each i = 1, 2, . . . , n . If we nominate a particular value p̄n for the
power on the final interval then we determine p̄n−1, . . . , p̄0 by first
solving the equation

ω(p̄n−1) = ω(p̄n)− Sϕ′(p̄n) ,
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and then recursively solving the equations

ω(p̄n−k−1) = ω(p̄n−k) + [ϕ′(p̄n−k+1)− ϕ′(p̄n−k)]S

for each k = 1, . . . , n − 1 . Once we have determined the complete
power set p̄0 < p̄1 < · · · < p̄n we calculate the corresponding switch-
ing times from

ti+1 =
E0

p̄0

[
1 +

S

p̄1

+ · · ·+ Si

p̄1p̄2 · · · p̄i

]
for each i = 0, 1, . . . , n . Of course this solution may not be feasible
because it is likely that we will not satisfy the constraint tn+1 = T .
However, this problem is overcome by adjusting the value of p̄n and
repeating the above calculations. In this regard note that

ω′(p̄n−1)
dp̄n−1

dp̄n

= ω′(p̄n)− Sϕ′′(p̄n) ,

and hence deduce that

dp̄n−1

dp̄n

=
ω′(p̄n)

ω′(p̄n−1)

[
1 +

S

p̄n

]
> 0 .

In similar fashion we have

ω′(p̄n−2)
dp̄n−2

dp̄n

= [ω′(p̄n−1)− Sϕ′′(p̄n−1)]
dp̄n−1

dp̄n

+ Sϕ′′(p̄n) ,

from which it follows that

ω′(p̄n−2)
dp̄n−2

dp̄n

= ω′(p̄n−1)

[
1 +

S

p̄n−1

]
ω′(p̄n)

ω′(p̄n−1)

[
1 +

S

p̄n

]
−ω′(p̄n)

S

p̄n

,

and hence

dp̄n−2

dp̄n

=
ω′(p̄n)

ω′(p̄n−2)

[
1 +

S

p̄n−1

+
S2

p̄n−1p̄n

]
> 0 .
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By continuing in this way we obtain the general formula

dp̄n−k

dp̄n

=
ω′(p̄n)

ω′(p̄n−k)

[
1 +

S

p̄n−k+1

+
S2

p̄n−k+1p̄n−k+2

+ · · ·

+
Sn−k

p̄n−k+1p̄n−k+2 · · · p̄n

]
> 0 (5)

for each k = 1, 2, . . . , n . If p̄n increases see that p̄i increases for all
i = 0, 1, . . . , n − 1 and hence tn+1 decreases. If p̄n decreases then
tn+1 increases.

Theorem 3 If the battery capacity is infinite and if s(t) = S for
all t ∈ [0, T ] then there is a unique value of p̄n such that tn+1 = T .
In this case the time taken for stage i of the journey is

∆ti =
E0S

i

p̄0p̄1 · · · p̄i

(6)

for each i = 0, . . . , n , and the total distance travelled is

xmax =
E0

p̄0

[
ϕ(p̄0) + ϕ(p̄1)

S

p̄1

+ · · ·+ ϕ(p̄n)
Sn

p̄1p̄2 · · · p̄n

]
. (7)

6 The case in which solar power is

constant and the battery capacity is

finite

We assume that s(t) = S for all t ∈ [0, T ] . In this section we also
assume that the battery has finite capacity C and that E0 = C . For
an optimal solution we must satisfy the requirements that S∆ti ≤ C
for each i = 0, . . . , n− 1 . If we assume the necessary conditions for
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a maximal journey are satisfied then the capacity constraints can
be written as

p̄0p̄1 · · · p̄i ≥ Si+1 (8)

for each i = 0, . . . , n−1 . Let us reconsider the necessary conditions.
From equation (5) see that as the power p̄n on the final interval is
increased the power p̄i on every other interval is also increased. If p̄n

is increased until p̄0 = S then the optimality condition (4) ensures
that the capacity constraints (8) are also satisfied. If

tn+1 =
C

p̄0

[
1 +

S

p̄1

+ · · ·+ Sn

p̄1p̄2 · · · p̄n

]
≥ T ,

then we simply increase p̄n until tn+1 = T . If tn+1 < T then we
increase the number of time intervals. Note that the capacity con-
straint (8) implies that

tn+1 ≥
(n + 1)C

S
.

By choosing n sufficiently large we ensure that tn+1 ≥ T . Now
we repeat the earlier adjustment procedure to satisfy the time con-
straint.

7 Results for non-constant solar power

Calculating optimal switching points is more difficult when solar
power is not constant. We used a steepest ascent method to find a
numerical solution.

Table 1 shows distance travelled, average speed and energy col-
lected for each interval of a journey with hourly switching times.
Solar energy is calculated from typical solar irradiance curves for
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Table 1: Hourly switching times
time (hh:mm) dist (km) speed (km/h) energy (Wh)

8:00
9:00 57.81 57.81 1109.3

10:00 37.39 37.39 1418.4
11:00 43.43 43.43 1647.1
12:00 47.32 47.32 1782.5
13:00 49.43 49.43 1816.9
14:00 49.95 49.95 1748.3
15:00 48.91 48.91 1580.7
16:00 46.23 46.23 1323.5
17:00 41.69 41.69 991.3

422.17 46.91

Table 2: Optimal switching times
time (hh:mm) dist (km) speed (km/h) energy (Wh)

8:00
9:38 72.36 44.38 1972.7

10:54 58.21 45.69 2037.7
12:09 58.71 47.13 2220.3
13:26 62.48 48.56 2322.1
14:43 63.82 49.97 2121.5
15:49 56.83 51.51 1534.0
16:34 39.71 53.55 817.8
16:54 19.88 57.29 314.8
17:00 6.39 68.02 77.3

438.39 48.71
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Central Australia. The total distance travelled is 422.17 km and the
average speed is 46.91 km/h.

Table 2 shows the results if we use the same number of inter-
changes but the batteries are interchanged at the computed optimal
times. The original switching times from Table 1 were improved us-
ing a steepest-ascent method. The final switching times were found
after 1905 steps. On the final step the improvement in total distance
travelled was less than 1 metre. The total distance travelled with
this strategy is 438.39 km and the average speed is 48.71 km/h.

8 Conclusions

It is interesting to review the report on the 1996 World Solar Chal-
lenge [8] and the recent literature on optimal driving strategies for
solar powered cars. The pertinent observation in the context of this
paper is that a constant speed strategy, where feasible, is essen-
tially the most efficient in terms of energy consumption [3]. How-
ever, in general we find that other factors must be considered and
in many cases an optimal strategy may require small variations in
speed [1, 2, 4, 5, 6, 7].

The optimal strategy proposed in this paper resulted in an in-
crease of 16 km in distance travelled and is clearly significant in the
context of a solar car race. We should nevertheless admit that the
strategy was not used by Annesley College during the 2001 World
Solar Challenge. On the other hand we are pleased to report that
two year 12 students from the College did use the above algorithm
to calculate improved switching times and to understand the fun-
damental ideas of optimal control.
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