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Drying and shrinkage of computer
simulated paper
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Abstract

We describe the modelling and computation of paper
shrinkage during drying, using a finite difference method and
simulated paper structure. Radial contraction of drying fi-
bres leads to axial compression of crossing, bonded fibres.
This microcompression process makes a major contribution
to the shrinkage of the paper. The influence of fibre ori-
entation is computed, and shown to be very significant, in
accordance with observations. The method relies on the pos-
sibility of maintaining fixed anisotropic stiffness constants as
the network rotates.
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1 Introduction

The casual observer will note that paper expands when wetted and
that wet paper shrinks on drying. Shrinkage is also manifested as
tension when paper is dried under constraint. It has an important
influence on the mechanical properties of paper and of paper board
used in fabricating boxes and suchlike. There are also effects of
shrinkage and tension in paper making machines.

Free fibres shrink in diameter (radially) but not in length (axi-
ally). So why does paper shrink? Page and Tydeman [1], showed
that shrinkage occurs at bonded interfaces between fibres. Radial
shrinkage of one fibre leads to axial compression of the fibre to
which it is bonded, called a microcompression. So the paper net-
work shrinks by an amount determined by the equilibrium between
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tensile and compressive forces at bonded interfaces. It is notable
that this bonding is due to the formation of hydrogen bonds at the
molecular level, and it quite strong. Page and Tydeman obtained
micrographs of bonded fibres that clearly show such microcompres-
sions.

The aim here is to model the microcompression process and
thereby quantify the shrinkage of paper in terms of the shrinkage
of individual fibres. We shall need to first simulate the paper struc-
ture and then develop a finite difference method to compute the
shrinkage of this structure.

2 Simulating paper structure

We shall ultimately use a 2D model to simulate shrinkage. However,
a vital input is the bonding between fibres. This is determined by
the interaction between fibres in 3D, so we first simulate a 3D model.
Then the influence of fibre dimensions and fibre flexibility can be
incorporated in a realistic way [2, 3].

A fibre is represented as a flexible, hollow tube [2, 3], which
is initially straight. Points on the fibre surface are confined to a
fine 3-dimensional grid. The grid spacing or cell dimension in the
Z direction of the paper (normal to the surface) is equal to the
fibre wall thickness. Spacing in the X, Y plane is typically about
double the Z spacing. A typical fibre is of order 5 to 10 cells in
circumference (that is, of order 10 to 20 times the wall thickness)
and of order 100 to 200 cells long, and so occupies of order 1000 cells.
The length distribution can be varied.

Fibre centres are chosen randomly and uniformly in a small
square, and have angles and lengths chosen randomly from prob-
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ability distributions. The square is a little wider than the longest
fibre. Fibres that extend outside the square are mapped period-
ically back into the square, so the paper is effectively an infinite
tiling. This removes edge effects, so that the small square imitates
a much larger homogeneous sheet of paper.

An initially straight fibre is allowed to flex so as to conform
closely to other fibres. Undulations or ‘kinks’ in the fibre wall are
limited to one Z grid step per X or Y grid step. The first fibre
is placed flat on a plane. The next starts straight and level above
the plane and is lowered vertically as far as possible, consistent
with the kink constraints and the condition that the fibres are non-
intersecting sets in 3-dimensions (or non-penetrating solid bodies).
Subsequent fibres are deposited in similar fashion.

The hollow interiors of the tubes are called lumens. The struc-
tures so generated have collapsed lumens. The simulation then
opens lumens where this is consistent with no overlaps and the kink
constraints, while confining the structure between two horizontal
planes. Then the degree of collapse will vary along the length of
the fibre, tending to be greater near fibre crossings. Figure 1 is a
section view of a simulation with 200 fibres. Fibre walls are drawn
thinner than they actually are so that their individuality is evident.
Areas of contact between fibres are then treated as bonded, so one
has a complex 3D solid structure.

Some features of Figure 1 warrant comment. Some fibre sec-
tions appear isolated, because the fibres that constrain them do not
appear in this section. Some fibre sections are not closed, because
the fibres are open ended tubes cut at an angle across their ends.
Vertical stripes on fibres indicate that a vertical part of the fibre
wall lies in the section.

Figure 2 shows 20 inner fibres (numbers 101–120) and their cells
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Figure 1: Part of a section view of a simulation with 200 fibres.

Figure 2: Twenty inner fibres and their cells in the simulation.

in the simulation. Fibre orientation is isotropic in this case.

3 Modelling shrinkage

Figures 1 and 2 represent the formed paper when all free water has
been removed but water absorbed by fibres remains. The fibres
are assumed to have expanded radially by 30%, but not axially,
relative to their dry state. In this wet state, fibres have length/width
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ratio 25.

We regard a fibre as an anisotropic elastic object. Then the sim-
ulated paper is a complex elastic structure, resembling a fabricated
frame of steel struts. We treat wet fibre expansion as an elastic
strain due to internal forces created by water pressure. When water
is removed, the fibres relax, but contraction is limited by bonding.
The aim is to compute the equilibrium state of the whole bonded
network of dry fibres.

The first step is to project the 3D structure on the plane, and
treat the deformation as 2D. Thus out-of-plane effects like wrinkling
are not included, but these occur on a larger distance scale. The
3D structure has served the purpose of identifying bond locations.
Now one has a 2D structure comprising many superimposed and
connected elastic sheets. The equilibrium is computed using a finite
difference scheme whose nodes are the projected centres of the ex-
isting cells. The periodic boundary conditions are used. Stiffness of
fibres is represented by elastic links between these nodes, as in Fig-
ure 3. Bonds between fibres become elastic links between bonded
nodes, representing the shear stiffness of bonds.

Fibres have stiffness constants Cijkl, i, j, k, l = 1, 2 relating the
stress components σij and strain components εij

σij =
∑
k,l

Cijkl εkl (1)

with certain symmetries. In another common notation [4], this takes
the form

σα =
∑

β

Cαβ εβ (2)

with α, β = 1, 2, 6 (index 3 is reserved for the third dimension) and
σ1 = σ11 , σ2 = σ22 , σ6 = σ12 and Cαβ = Cβα . For simplicity,
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Figure 3: Elastic links between nodes.

we use a Cauchy model (1806), in which links are linear springs,
freely pivoting at nodes. This formed the basis of Cauchy’s atomic
theory of elasticity [4]. It implies that the Cijkl are invariant un-
der permutations of i, j, k, l, so there are only 5 distinct constants.
Equivalently C12 = C66, which is one of the ‘Cauchy relations’ [4]
(now known not to be generally applicable).

4 Link stiffnesses

Every fibre has a different angle φ relative to the grid, so we have to
choose link stiffnesses (not stiffness constants) Kb(φ), b = 1, . . . , 4
depending on φ as in Figure 3. They have dimensions force/length.

We now study the question of whether such Kb(φ) can be chosen
so that every fibre has the same stiffness constants relative to its own
axes. They are given by the equations of equilibrium

4∑
b=1

MabKb = Ca , a = 1, . . . , 5 , (3)
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with another notation for stiffness constants

C1 = C1111 = C11 ,

C2 = C1112 = C16 ,

C3 = C1122 = C12 ,

C4 = C1222 = C26 ,

C5 = C2222 = C22 , (4)

and
Mab = r2

b cos5−a θb sina−1 θb , (5)

where r1 = r3 = 1 , r2 = r4 =
√

2 are the lengths of the links and

θ1 = −φ , θ2 = π/4− φ , θ3 = π/2− φ , θ4 = 3π/4− φ , (6)

are the angles between the fibre axis and the links. In effect, Mab

is divided by the unit area of the cell in Figure 3, and is therefore
dimensionless. The Ci, being 2D stiffness constants have dimensions
force/length.

We have 5× (0, π/2) equations in 4× (0, π/2) unknowns Kb(φ).
This comprises an uncountable infinity of equations in an uncount-
able infinity of unknowns, where the number of equations exceeds
the number of unknowns by an uncountable infinity. The question
of interest is whether these equations have any solutions. As shown
in Section 7, a solution exists for all φ if and only if

C2 = C4 , C1 + C5 = 6C3 , (7)

and the solution is then unique. By simple elimination, the solution
is found to be

K1 = (A + B cos 2φ−D sin 2φ)/2 ,

K2 = (A + B sin 2φ + D cos 2φ)/4 ,

K3 = (A−B cos 2φ + D sin 2φ)/2 ,

K4 = (A−B sin 2φ−D cos 2φ)/4 , (8)
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where

A = (C1 + 2C3 + C5)/2 , B = C1 − C5 , D = 2(C2 + C4) . (9)

Furthermore Kb ≥ 0 if and only if A2 ≥ B2 +D2 , which reduces to

4C2
2 ≤ (C1 − C3)(C5 − C3) . (10)

Thus (7) and (10) are the conditions under which one can have
the same stiffness constants for every fibre (every orientation of the
grid).

There is evidence that fibres are approximately ‘orthotropic’; a
common symmetry that implies C2 = C4 = 0 , leaving only 2 inde-
pendent constants. Then the constraints reduce to

C12 = (C11 + C22)/6 , C11/5 ≤ C22 ≤ 5C11 , (11)

which put limits on the degree of elastic anisotropy of a fibre. We
take relative values suggested by data: C11 = 1.5 , C22 = 0.4 and
C12 = 0.316̇ . Units are not required because we shall compute only
deformations, not forces.

Shear stiffness of bonds is comparable to fibre wall stiffness, so
we take a value 1. Much larger values give similar overall shrinkage.
(See a small shear displacement of bonds in Figure 5).

5 Numerical solution

The elastic equilibrium is computed via Gauss-Seidel iteration. Fig-
ure 4 shows a small area of wet paper from Figure 2. Figure 5 shows
the state of fibres from Figure 4 after drying. Where fibres are not
bonded they have shrunk radially by up to 30%, so that squares in
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Figure 4: A small area of wet paper from Figure 2.
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the mesh have become diamonds. But, overall, the radial shrinkage
of fibres is substantially less than 30% and is variable along their
lengths, due to bonding with fibres not shown. The shrinkage of the
whole structure is only 6% in both directions in the plane. Com-
paring the dimensions of the elements in the bonded region of the
2 crossing fibres in Figure 5, one sees that both fibres have experi-
enced both radial and axial contractions of around 10%. The axial
contractions represent the microcompressions described in Figure 1.
There is evidently much residual stress locked into the dry struc-
ture. Fibres are generally in a state of radial tensile stress and
axial compressive stress. Features of the deformation of fibres in
the dry paper are discussed in heuristic terms in [1], but even in our
simplified model, the deformations are too complex to summarize
adequately in a verbal description.

Computation time depends on the initial state for the iteration.
If one takes an initial solution with no shrinkage, then the iteration
could take up to an hour to converge adequately on a Sun ultra 10.
If one has an independent estimate of shrinkage, then the initial
state for the iteration is taken as uniformly contracted with this
shrinkage. If this estimate is good, then the computation involves
mainly local strains, and computation time is much smaller.

6 Influence of fibre orientation

The simulated drying process was carried out also when fibres have
orientation parameter K = 0.5 and 1.5 in the von Mises angular
distribution

g(φ) =
1

πI0(K)
exp(K cos 2φ) , (12)
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Figure 5: The state of fibres from Figure 4 after drying.
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Table 1: Dependence of directional shrinkage on fibre orientation.
orientation % shrinkage
K Q md cd
0 -0.004 6 6

0.5 0.243 5 8
1.5 0.596 3 12

for fibres making angle −π/2 ≤ φ ≤ π/2 with the machine direction
(md). For K = 0 the fibre angles are isotropic, whereas K = 0.5 is
a typical value for machine-made paper, and K = 1.5 is the highest
orientation observed by Perkins and Mark [5]. A more intuitive
measure of fibre orientation is the quantity

Q =
1

Nf

∑
i

cos(2φi) , (13)

where φ1, . . . , φNf
are the fibre angles relative to the md. Thus Q has

expectation value I1(K)/I0(K), which is 0 for isotropic orientation
and 1 for fibres all aligned in the md. The simulation results are
are given in Table 1.

As expected, md shrinkage is reduced and cross direction (cd)
shrinkage increased as a result of fibre orientation. This is in general
agreement with measurements [1].

The important topic of drying tension and drying restraint could
be investigated using the present methods. The implications for
stiffness and strength of the dry paper could then be investigated.
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7 Existence and uniqueness of link

stiffnesses

To prove eq. (7) it is convenient to consider a natural generalization
of eq. (3):

Ax = b , (14)

with A = [aij] where

aij = (cos θj)
n+1−i(sin θj)

i−1 (15)

with i = 1, . . . , n + 1 , j = 1, . . . , n and θj = (j − 1)π/n − φ . Here
we investigate conditions for existence and uniqueness of solutions
of (14).

Let Sn be the n × n matrix formed by the first n rows of A.
Provided no cos θj is zero,

detSn = detTn

n∏
j=1

(cos θj)
n (16)

where Tn = [tij] with tij = (tan θj)
i−1, whose determinant is of

Vandermonde type with value

detTn =
∏

1≤i<j≤n

(tan θj − tan θi) . (17)

It follows that

detSn =

[
n∏

j=1

cos θj

] [ ∏
1≤i<j≤n

sin(θj − θi)

]
, (18)

regardless of whether any cos θj is zero. No sin(θj − θi) is ever zero
because θj−θi = (j− i)π/n . If φ is such that no cos θj is zero, then
Sn is non-singular and so A has rank n.
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Evidently only one cos θj can be zero for a fixed φ. Suppose this
is the case j = n. Then let P be the n × n matrix obtained by
deleting the nth row of A. Now

detP = sinn θn . detSn−1 . (19)

But sin θn 6= 0 for this φ and, by the above argument, detSn−1 is
non-zero for this φ. Thus P is non-singular and so again A has
rank n. Likewise if any other cos θj = 0 , so solutions are always
unique.

For fixed φ, solutions exist if rank[A|b] = n , where [A|b] is the
(n + 1) × (n + 1) augmented matrix. Write the rows of A as ri ,
i = 1, . . . , n + 1 . Since rankA = n , there must be a unique (up to
a scale factor) linear relation between the ri , say

n+1∑
i=1

λiri = 0 . (20)

where the λi are not all zero. If rank[A|b] = n too, there must be
the same linear relation between its rows, because of the uniqueness
of (20). Then (20) implies

n+1∑
i=1

λibi = 0 . (21)

This is the single constraint on b that gives a unique solution of (14),
for fixed φ. But the λi depend on φ, so (21) represents an uncount-
able infinity of constraints, parametrised by φ.

For the case n = 4 one finds that (20) takes the form

(r1 − 6r3 + r5) sin 4φ = 4(r4 − r2) cos 4φ , (22)

whence (21) becomes

(b1 − 6b3 + b5) sin 4φ = 4(b4 − b2) cos 4φ , (23)
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for all φ. If φ is an even multiple of π/8, this implies

b4 − b2 = 0 , (24)

and if φ is an odd multiple of π/8, it implies

b1 − 6b3 + b5 = 0 . (25)

For all other φ, (23) implies both (24) and (25), which are just
eqs. (7). From another point of view, the equations are satisfied
for all φ if they are satisfied for just 2 values of φ. Hence we have
effectively 10 equations in 8 unknowns, requiring 2 constraints.
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