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Coupled logistic carrying capacity model
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Abstract

This study proposes a coupled nonlinear system based on the
logistic equation that models the interaction of a population with its
time varying environment. The model eliminates the need for a priori
knowledge of the environmental carrying capacity or constraints to be
placed upon the initial conditions. Analysis and computer simulations
are presented to illustrate the system’s dynamical behaviour.
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1 Introduction

Growth models such as the logistic equation have been widely studied and
applied in population and ecological modelling. Introduced in the 19th century,
the logistic equation describes population growth with a self-limitation term
which serves as a correction to the unlimited growth of the Malthusian model.
The classical logistic (or Verhulst’s) equation is [1]

dN

dt
= rN

(
1−

N

K

)
, N(0) = N0 (1)

where N(t) denotes the population density, r is the intrinsic growth rate,
K is the carrying capacity, and N0 is the initial population density at time
t = 0 . The nature of this equation is that the property of the solutions, for
all strictly positive initial conditions, approach the constant value carrying
capacity, K, as time, t, tends to infinity.

The carrying capacity is usually regarded as a constant, which is not often
realistic. Many studies have discussed the importance of time dependent
carrying capacities [1]. By using a time dependent carrying capacity, K(t),
the logistic equation is in the form of a nonautonomous function. As opposed
to the classical logistic equation for which an exact solution can be found, the
analytical solution of the nonautonomous equation is often not possible. In
addition, phase plane analysis cannot be utilized if the system is no longer
autonomous. For some cases where the system may remain autonomous but
not solvable exactly, numerical computations can be used as another option
to understand the system. The time dependent forms, K = K(t), have been
successfully used to describe the enrichment of a lake by a nutrient [2], to
forecast product life cycles of electrical goods [3], and to describe seasonal
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environments [4]. Recently, a functional form of carrying capacity was used
to describe the changing micro-environment beneath an occlusion on healthy
human skin [5]. Meyer [6] and Meyer and Ausubel [7] used a logistically
varying carrying capacity to model the technological development of a human
population. For these applications it is important that the carrying capacity
is not treated as a constant. Positive changes in environment such as new
resources or food production elevates the carrying capacity, whereas a negative
change such as the advent of a toxic environment or food depletion will degrade
the carrying capacity.

This article links the changing carrying capacity with the logistic equation as
a coupled nonlinear differential system. We develop a logistic-type growth
model that predicts the changes in the population due to the changes in the
environment’s carrying capacity.

2 Modified logistic models

Several examples exist of a logistic-type equation coupled to an equation
for the carrying capacity. Huzimura and Matsuyama [8] studied a model
where the rate of change of the carrying capacity decays proportionally to the
population size. Another model that tried to link the direct dependency of a
population to its carrying capacity was proposed by Thornley and France [9],
later modified by Thornley et al. [10], can be written as

dN

dt
= aN

(
1−

N

K

)
, (2a)

dK

dt
= −b(K−N), (2b)

where the positive constants a and b are the population growth rate and
environmental development rate respectively. As the parameter b is positive it
describes the natural loss of carrying capacity but at the same time allows the
population to contribute to the carrying capacity itself. An important feature
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of the model is that the asymptotic value of K(t) is not known a priori as it is
in the logistic equation (1) where K is a fixed parameter. However, the model
has infinitely many stationary solutions along the line N = K . Therefore
initial conditions N(0) = K(0) will have no dynamical behaviour which is
unfortunate for the case where the population is initially in equilibrium with
its environment. Effectively, within this model, the choice of initial condition
determines the asymptotic carrying capacity. System (2) can be rescaled
using a set of substitutions n = bN , k = bK , τ = at , such that

dn

dτ
= n

(
1−

n

k

)
, (3a)

dk

dτ
= −γ(k− n), (3b)

where γ = b/a is a ratio between the environmental development rate and
the population growth rate. The system (3) has steady states at n∗ = k∗ 6= 0
which is an infinite line.1 The line n∗ = k∗ 6= 0 is a stable critical line with
eigenvalues of λ1,2 = 0,−(γ + 1) of the Jacobian matrix. With zero and
negative real eigenvalues, all trajectories in the first quadrant (n,k > 0) will
approach the critical line for a given set of initial conditions. The system
shows that by providing specific values of initial conditions, the solution will
always change to another stable solution (see curves (i) and (ii) in Figure 1a).
When initial conditions start at the same value, for example n0 = k0 = 0.1 ,
no growth occurs for both population and its environment, hence they remain
the same for all time. This can be seen in curve (iii) in Figure 1a. The system
requires the initial value of the carrying capacity to be a higher value than
the initial population in order to observe the population’s growth. If the
initial carrying capacity is lower than the initial population, the population
decreases toward the carrying capacity. Figure 1b demonstrates the effect of
different parameter values for γ for fixed initial conditions with k0 > n0 .

1k = 0 is singular in the differential equations (3). Note that by cancellation of the
common factor (k − n) the system (3) has dn/dk = −n/(γk) and hence trajectories,
n ∝ k−1/γ, are hyperbolic-like.



3 Coupled logistic carrying capacity model C176

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

τ

γ = 0.5

(i)

(ii)

(iii)

n
, 

k

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

n
, 

k
τ

γ=0.1

γ=0.5

γ=2.0

(b)

Figure 1: Logistic growth curve (solid line) and its carrying capacity (dashed
line) in system (3) for different initial values (a) γ = 0.5 and n0 = 0.1
with (i) k0 = 0.4 , (ii) k0 = 0.2 , (iii) k0 = 0.1 , (b) γ = 0.1 , 0.5, 2.0 with
(n0,k0) = (0.1, 2.0).

3 Coupled logistic carrying capacity model

Unlike the models proposed by Huzimura and Matsuyama [8] and Thornley
and France [9], we introduce a modified coupled logistic carrying capacity
model that could incorporate the dependency of a population and its environ-
ment by using a nonlinear interaction term. We start by assuming a standard
logistic equation for the population N with constant growth rate a. The
carrying capacity K is assumed to change at a rate proportional to its present
value with proportionality constant b, the development rate. The population
depletes the carrying capacity through an interaction term with the rate c.
Instead of the population independently contributing to the development of
the carrying capacity, our model encompasses the dependency of the carrying
capacity to change through an interaction with the population. Thus we
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modify the Thornley model (2) to

dN

dt
= aN

(
1−

N

K

)
, (4a)

dK

dt
= bK− cKN . (4b)

Meyer [6] and Meyer and Ausubel [7] introduced the carrying capacity func-
tion as dK/dt = αK−αK2/Kα in their models. The nonlinear term K2 ensures
the carrying capacity is self-limiting. If the population influences the carrying
capacity or vice versa, this can be viewed as an interspecific relation between
the population and its carrying capacity. Thus, in our model, we introduce
the nonlinear term KN to represent this interaction in Equation (4b). Equa-
tion (4b) can also be written as dK/dt = bK(1 − αN) where α = c/b . By
introducing non-dimensionalized parameters

n = αN , k = αK , and τ = at ,

we obtain the non-dimensionalized form of the model (4)

dn

dτ
= n

(
1−

n

k

)
, (5a)

dk

dτ
= µk(1− n), (5b)

where µ = b/a is a ratio between the carrying capacity development rate and
the population growth rate. By equating the system (5) to zero, one steady
state is obtained at (n∗,k∗) = (1, 1).2 To examine the stability properties in
the neighbourhood of the steady state, we use the Jacobian matrix

J =

1− 2n

k

n2

k2

−µk µ(1− n)

 .

2As before k = 0 is singular in the system (5).
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For the steady state, the Jacobian’s eigenvalues are λ1,2 = (−1±
√
1− 4µ)/2 .

Hence the point (1, 1) is a stable spiral if µ > 1/4 , or a stable node otherwise.

The system (3) is autonomous and can be solved exactly. However, for our
model (5) only numerical solutions can be obtained due to the nonlinearity of
the system. An advantage of system (5) is that there exists a unique stable
attractor for any initial conditions (n,k) = (n0,k0). Any selection of n0
and k0 will approach the same equilibrium solution. We start from the first
case where the population and its carrying capacity are at the same level,
n0 = k0 . Figure 2 shows the behaviour of solutions of n and k using the
model (5). When µ > 1/4 , oscillations between n and k are expected as
demonstrated by the linear stability analysis. Overshoots for n and k can be
seen and are more pronounced if the value of µ is much greater than 1/4.

For µ = 2 (b = 2a), the development rate is double the growth rate and as a
result, the carrying capacity shows a rapid increase initially while a slower
growth in the population. This increase in the carrying capacity, indicative of
an improved environment, is more conducive for further population growth.
At the stage when the carrying capacity depletes due to the interaction
with the population, the population eventually will have to fall. Moreover,
an overpopulated environment exhausts available resources thus lowering
the carrying capacity. With the population losses, the resource becomes
richer once more which allows the population to slowly grow back, and
exhibits repeated (damped) oscillations until the population reaches the
stable environment.

Figure 2b illustrates that if the population growth rate is equal to its carrying
capacity development rate, (µ = 1 , b = a), then the difference between
n and k in the early stage of growth is smaller compared to when µ = 2 . A
small difference can be seen when µ = 0.5 in Figure 2c with the carrying
capacity growing slightly faster than that of the population. As µ gets smaller
(µ = 0.2 < 1/4), the population and the carrying capacity gradually increase
to the equilibrium level (Figure 2d).

For the second case when an initially rich environment is assumed, a huge
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increase in the carrying capacity can be seen, followed by an increase in the
population as shown in Figure 3. Once the carrying capacity shows depletion,
the population density also starts to decline. We observe in the figure that
the variation in the carrying capacity is very large compared to the variation
in the population growth. For example, for µ = 2 Figure 3a shows that
the carrying capacity peaks at about 36 before decaying, but when µ = 0.2
Figure 3d shows that the carrying capacity peak is less than 12 times smaller
than for µ = 2 . In contrast with the cases in Figure 2c and 2d where there
were only small numerical differences between the population and the carrying
capacity, Figure 3 shows more pronounced variations between the population
and the carrying capacity caused by their initial values.

4 Discussions

The concept of the carrying capacity as the environment’s maximal load
defines the limited growth of a population. The difficulty of determining the
exact form of the carrying capacity often means certain assumptions have
to be made. The contribution of environmental enrichment to the carrying
capacity, due to an increase of nutrients or food resources, is one possible
assumption. Since there is no specific way to model the carrying capacity,
we proposed the modified logistic growth model. The model encompasses
the direct dependency of the growth equations with its carrying capacity.
Instead of assuming the carrying capacity as an independent parameter, our
model provides the physical idea of the inter-relation that coexists between
the environment and the population. By connecting them, we understood
the effect of a varying carrying capacity on the population’s growth.

Our results show that development of the carrying capacity encourages the
population to grow. The main parameters in our model (4) are determined by
the population growth rate, a, and the development rate, b, of the carrying
capacity. Oscillations occur in the growth curves by fixing the carrying
capacity development rate to be more than a quarter of the population
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Figure 2: Logistic growth curve (solid line) and its carrying capacity (dashed
line) in system (5) with (a) µ = 2.0 , (b) µ = 1.0 , (c) µ = 0.5 , and (d) µ = 0.2
with n0 = k0 = 0.1 (note that different scales are used).
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Figure 3: Logistic growth curve (solid line) and its carrying capacity (dashed
line) in system (5) with (a) µ = 2.0 , (b) µ = 1.0 , (c) µ = 0.5 , and (d) µ = 0.2
with n0 = 0.1,k0 = 2.0 (note that different scales are used).
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growth rate. Our model is an extension of previous modified logistic models,
and is still open for further exploration. Our work only considered a simple
interaction term between the population and its environment via the carrying
capacity. Other forms of interaction terms are also possible depending on
particular cases. The model has the potential to be used as an application in
biological and ecological sciences.
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Sirovich, M. Golubitsky and W. Jäger (Eds.). Growth and Diffusion
Phenomena:Mathematical Frameworks and Applications, 5–6,
Springer-Verlag, Berlin, Germany, 1994. C173

[2] S. Ikeda and T. Yokoi. Fish population dynamics under nutrient
enrichment—A case of the East Seto Inland Sea. Ecological Modelling,
10, 141–165, 1980. doi:10.1016/0304-3800(80)90057-5 C173

[3] C. V. Trappey and H. Y. Wu. An evaluation of the time–varying
extended logistic, simple logistic, and Gompertz models for forecasting
short product lifecycles. Advanced Engineering Informatics, 22,
421–430, 2008. doi:10.1016/j.aei.2008.05.007 C173

[4] S. P. Rogovchenko and Y. V. Rogovchenko. Effect of periodic
environmental fluctuations on the Pearl-Verhulst model. Chaos, Solitons
and Fractals, 39, 1169–1181, 2009. doi:10.1016/j.chaos.2007.11.002 C174

[5] H. Safuan, I. N. Towers, Z. Jovanoski and H. S. Sidhu. A simple model
for the total microbial biomass under occlusion of healthy human skin.

http://dx.doi.org/10.1016/0304-3800(80)90057-5
http://dx.doi.org/10.1016/j.aei.2008.05.007
http://dx.doi.org/10.1016/j.chaos.2007.11.002


References C183

In Chan, F., Marinova, D. and Anderssen, R.S. (eds) MODSIM2011,
19th International Congress on Modelling and Simulation. Modelling
and Simulation Society of Australia and New Zealand., 733–739, 2011.
C174

[6] P. Meyer. Bi-logistic Growth. Technological Forecasting and Social
Change, 47, 89–102, 1994. doi:10.1016/0040-1625(94)90042-6 C174,
C177

[7] P. Meyer and J. H. Ausubel. Carrying Capacity: A Model with
Logistically Varying Limits. Technological Forecasting and Social
Change, 61, 209–214, 1999. doi:10.1016/S0040-1625(99)00022-0 C174,
C177

[8] R. Huzimura and T. Matsuyama. A mathematical model with a
modified logistic approach for singly peaked population processes.
Theoretical Population Biology, 56, 301–306, 1999.
doi:10.1006/tpbi.1999.1426 C174, C176

[9] J. H. M. Thornley and J. France. An open-ended logistic-based growth
function. Ecological Modelling, 184, 257–261, 2005.
doi:10.1016/j.ecolmodel.2004.10.007 C174, C176

[10] J. H. M. Thornley, J. J. Shepherd and J. France. An open-ended
logistic-based growth function: Analytical solutions and the power-law
logistic model. Ecological Modelling, 204, 531–534, 2007.
doi:10.1016/j.ecolmodel.2006.12.026 C174

Author addresses

1. H. Mohd Safuan, Applied and Industrial Mathematics Research
Group, School of Physical, Environmental and Mathematical Sciences,
University of New South Wales, Canberra 2600, Australia.
mailto:hamizah.mohdsafuan@student.adfa.edu.au

http://dx.doi.org/10.1016/0040-1625(94)90042-6
http://dx.doi.org/10.1016/S0040-1625(99)00022-0
http://dx.doi.org/10.1006/tpbi.1999.1426 
http://dx.doi.org/10.1016/j.ecolmodel.2004.10.007 
http://dx.doi.org/10.1016/j.ecolmodel.2006.12.026
mailto:hamizah.mohdsafuan@student.adfa.edu.au


References C184

2. I. N. Towers, Applied and Industrial Mathematics Research Group,
School of Physical, Environmental and Mathematical Sciences,
University of New South Wales, Canberra 2600, Australia.
mailto:i.towers@adfa.edu.au

3. Z. Jovanoski, Applied and Industrial Mathematics Research Group,
School of Physical, Environmental and Mathematical Sciences,
University of New South Wales, Canberra 2600, Australia.
mailto:z.jovanoski@adfa.edu.au

4. H. S. Sidhu, Applied and Industrial Mathematics Research Group,
School of Physical, Environmental and Mathematical Sciences,
University of New South Wales, Canberra 2600, Australia.
mailto:h.sidhu@adfa.edu.au

mailto:i.towers@adfa.edu.au
mailto:z.jovanoski@adfa.edu.au
mailto:h.sidhu@adfa.edu.au

	Introduction
	Modified logistic models
	Coupled logistic carrying capacity model
	Discussions
	References

