
ANZIAM J. 46 (E) ppE70–E84, 2004 E70

Hypergeometric function expressions for the
molecule-micropore Lennard–Jones potential
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Abstract

We present hypergeometric function expressions for the molecule-
micropore Lennard–Jones potential in cylindrical pores, in which the
cylindrical wall can be a surface, or have thickness or have infinite
thickness. These expressions are useful in theoretical study and com-
puter simulations of fluids in micropore of circular cross sections.
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1 Introduction

Microporous and mesoporous materials, such as zeolites, aluminosilicates,
activated carbon, and pillared clays, have a wide range of industrial appli-
cations, including heterogeneous catalysis, purification of gases and water
streams, and storage of gaseous fuels. Recently there has been great inter-
est in theoretical and computer simulation studies of the equilibrium and
transport properties of fluids confined inside micropores. The interaction
between the fluid molecules and the micropore walls have been taken into
account by introducing various interatomic potentials from the view point of
quantum and statistical mechanics. The main idea is as follows. In colloidal
system, the interatomic potential consists of an attractive contribution from
van der Walls forces and repulsive part due to electrostatic effects between
the charged particles.

The most widely used interatomic potential is the so called Lennard–Jones
p− q potential [1].

Ep,q =
qε

q − p

(
q

p

)p/(q−p) [(σ
r

)q

−
(σ
r

)p]
where r is the interatomic separation, σ the separation at which the poten-
tial becomes 0, and ε the depth of the primary well. The two adjustable
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parameters σ and ε are actually determined on the basis of experiments.

The Lennard–Jones potential contains an attractive part due to van der
Waals forces and a repulsive contribution known as Born forces.

The parameter pair (p, q) is often chosen to be (6, q) (8 ≤ q ≤ 20)
and (4, 20). For this reason, we assume in this article that p and q are
even numbers with 4 ≤ p < q .

Denote by

Cp,q =
qε

q − p

(
q

p

)p/(q−p)

.

For example, C6,12 = 4ε .

If the atoms up to and on the wall of the cylindrical pore are distributed
continuously, the interaction energy U = Up,q of the test fluid atom with the
wall of volume Ω and number density N of the wall molecules is given by the
interaction over Ω, we have

U = Up,q = N

∫
Ω

Ep,q dΩ .

To evaluate this integral, one meets a kind of elliptic type integrals. In this
article, we express U = Up,q by hypergeometric functions for Ω to be the
following objects:

1. a cylindrical surface with infinite length and without thickness (see
formula (8));

2. the complement of a cylindrical pore in the three dimensional Euclidean
space R3 with infinite length (see the formula in Remark 7);

3. the wall of a cylindrical pore with infinite length and finite thickness
(see the formula in Remark 8).

Note that the last case can be deduced from the second case.
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2 The cylindrical surface wall without

thickness

In this section we assume the wall of the cylindrical pore is a cylinder sur-
face S with infinite length and without thickness. The interaction energy Up,q

of the test fluid atom with the surface of area S and number density N of
the wall molecules is given by the following integral over S:

Up,q = NCp,q

∫∫
S

[(σ
r

)q

−
(σ
r

)p]
dS . (1)

We explain the notations in the this integral (see Figure 1). The test fluid
atom sits at the origin OT of the coordinate in R3, the z axis is parallel to
the axis of the cylinder, choose the x axis such that the symmetric center O
of the cylinder is on the negative part of the x axis. Let |OOT | = ρ, R is
the radius of the cylinder. For P (x, y, z) on the cylinder S, let A(x, y, 0),

ϕ = ∠(
−−→
OTA, x− axis) , and ψ = ∠(

−−→
OOT ,

−→
OA) . Denote by

r2 = |OTP |2 = z2 + r̃2 ,

where
r̃2 = |OTA| = ρ2 +R2 − 2ρR cosψ .

By symmetry properties, we have

Up,q = 4NRCp,q

∫ π

0

dψ

∫ +∞

0

[(
σ2

r̃2 + z2

)q/2

−
(

σ2

r̃2 + z2

)p/2
]
dz . (2)

Recall that p and q are even numbers. Since∫ +∞

0

1

(a2 + z2)s
dz =

π

2
· (2s− 3)!!

(2s− 2)!!
· 1

a2s−1
, (3)
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we have

Up,q = 4NRCp,q

[
π

2
· (q − 3)!!

(q − 2)!!
σq

∫ π

0

dψ

r̃q−1
− π

2
· (p− 3)!!

(p− 2)!!
σp

∫ π

0

dψ

r̃p−1

]
. (4)

We have to evaluate the following integral

J̃2s =

∫ π

0

dψ

r̃2s−1
=

∫ π

0

dψ

(ρ2 +R2 − 2ρR cosψ)(2s−1)/2

=
2

(ρ+R)2s−1

∫ π/2

0

dθ

(1− k2 sin2 θ)(2s−1)/2
, (5)

where k = 2
√
ρR/(ρ+R) .

Let t = sin2 θ , then dt = 2 sin θ cos θ dθ = 2
√
t
√

1− t dθ . From (5) we
have

J̃2s =
1

(ρ+R)2s−1

∫ 1

0

t−1/2(1− t)−1/2(1− k2t)−(2s−1)/2 dt . (6)

By integral representation of hypergeometric function [2], we have

J̃2s =
π

(ρ+R)2s−1
F

(
2s− 1

2
,
1

2
; 1; k2

)
. (7)

Hence,

Up,q = 2π2NRCp,q

[
(q − 3)!!

(q − 2)!!

σq

(ρ+R)q−1
F

(
q − 1

2
,
1

2
; 1; k2

)
− (p− 3)!!

(p− 2)!!

σp

(ρ+R)p−1
F

(
p− 1

2
,
1

2
; 1; k2

)]
, (8)

where k2 = 4ρR/(ρ+R)2 .
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3 The cylindrical pore with infinite

thickness

In this section, we consider a test atom in a cylindrical pore, and the thickness
of the wall is infinite. Suppose that the atoms of the wall are distributed
continuously and uniformly within the whole region of the wall. Let the test
atom sit at the origin OT , the z axis be parallel to the axis of the cylindrical
surface, and, the intersection O of the x axis and the axis of the cylindrical
surface be on the negative part of the x axis. See Figure 2.

Denote by Ω the complement of the cylindrical pore in the three dimen-
sional Euclidean space R3. Then the Lennard–Jones potential is

Up,q = N

∫∫
Ω

Ep,q dΩ = 2NCp,q

∫∫
D

dx dy

∫ +∞

0

[(σ
r

)q

−
(σ
r

)p]
dz , (9)

where D := Ω ∩ {z = 0}, r =
√
x2 + y2 + z2, r̃ = |OTQ| =

√
x2 + y2 .

By (3), we have

Up,q = NπCp,q

[
σq (q − 3)!!

(q − 2)!!

∫∫
D

dx dy

r̃q−1
− σp (p− 3)!!

(p− 2)!!

∫∫
D

dx dy

r̃p−1

]
. (10)

Since we assume p and q are even number, it is enough to prove the following
lemma.

Lemma 1 By the above notation,

T2s−1 :=

∫∫
D

dx dy

r̃2s−1
=

2

2s− 3

∫ π

0

1

r2s−3
φ

dφ , (11)

where rφ = |OTA| .
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Proof: We divide D into two parts (see Figure 3):

D1 := {(x, y) | x2 + y2 ≤ (R + ρ)2} ∩D , D2 := D \D1 ,

where ρ = |OOt| . By using polar coordinates, one easily evaluates the inte-
gral on D2:∫∫

D2

dx dy

(x2 + y2)(2s−1)/2
=

∫ 2π

0

dθ

∫ +∞

ρ+R

r̃ dr̃

r̃2s−1
=

2π

2s− 3

1

(ρ+R)2s−3
.

Similarly∫∫
D1

dx dy

(x2 + y2)(2s−1)/2
= 2

∫ π

0

dφ

∫ ρ+R

rφ

r̃ dr̃

r̃2s−1

=
2

2s− 3

∫ π

0

[
1

r2s−3
φ

− 1

(ρ+R)2s−3

]
dφ .

♠

Lemma 2 Let k := ρ/R , then

T2s−1 =
2

2s− 3

R2s−3

(R2 − ρ2)2s−3

∫ π

0

(√
1− k2 sin2 φ+ k cosφ

)2s−3

dφ . (12)

Proof: Since rφ > 0 , and

r2
φ + 2ρrφ cosφ+ ρ2 −R2 = 0 ,

we have

rφ = −ρ cosφ+

√
R2 − ρ2 sin2 φ = R

(√
1− k2 sin2 φ− k cosφ

)
.

Substituting this into formula (11) in Lemma 1, we obtain formula (12). ♠
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Theorem 3 For integer n ≥ 1 , denote by

I2n−1 =

∫ π

0

(√
1− k2 sin2 φ+ k cosφ

)2n−1

dφ , (13)

then

I2n−1 = πF

(
−2n− 1

2
,−2n− 3

2
; 1; k2

)
. (14)

We divide the proof of Theorem 3 into the following three lemmas. In
the following, we agree that (−1)!! = 1 , 0! = 1 and

(
n
0

)
= 1 .

Lemma 4

I2n−1 = 2
n−1∑
µ=0

(
2n− 1

2µ

)
k2µ

∫ π
2

0

(1− k2 sin2 φ)
2n−1−2µ

2 (cosφ)2µ dφ . (15)

Proof: Note

I2n−1 =

∫ π
2

0

(√
1− k2 sin2 φ+ k cosφ

)2n−1

dφ

+

∫ π

π
2

(√
1− k2 sin2 φ+ k cosφ

)2n−1

dφ .

For the second integral, let t = π − φ , we have

I2n−1 =

∫ π
2

0

[(√
1− k2 sin2 φ+ k cosφ

)2n−1

+

(√
1− k2 sin2 φ− k cosφ

)2n−1
]
dφ
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= 2

∫ π
2

0

[(√
1− k2 sin2 φ+ k cosφ

)2n−1

+

(√
1− k2 sin2 φ− k cosφ

)2n−1
]
dφ

= 2

∫ π
2

0

[
n−1∑
µ=0

(
2n− 1

2µ

) (√
1− k2 sin2 φ

)2n−1−2µ

(k cosφ)2µ

]
dφ

= 2
n−1∑
µ=0

(
2n− 1

2µ

)
k2µ

∫ π
2

0

(
1− k2 sin2 φ

)(2n−1−2µ)/2
(cosφ)2µ dφ .

♠

Lemma 5

I2n−1 = πF

(
−n+

1

2
,
1

2
; 1; k2

)
+ π

n−1∑
µ=1

(
n− 1

µ

)
(2n− 1)(2n− 3) · · · (2n− 2µ+ 1)

2µµ!

× k2µF

(
−n+ µ+

1

2
,
1

2
;µ+ 1; k2

)
.

Proof: Substitute t = sin2 φ into formula (15), we have

I2n−1 =
n−1∑
µ=0

(
2n− 1

2µ

)
k2µ

∫ 1

0

t−
1
2 (1− t)µ− 1

2 (1− k2t)n−µ− 1
2 dt .

By the integral representation of hypergeometric function [2]

F (α, β; γ; z) =
1

B(β, γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−α dt ,
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where <γ > <β > 0 , and B(−,−) is the beta function.

Let α = −n+ µ+ 1
2
, β = 1

2
, γ = µ+ 1 , and z = k2 , we have∫ 1

0

t−
1
2 (1− t)µ−1/2(1− tk2)n−µ−1/2 dt

= B

(
1

2
, µ+

1

2

)
F

(
−n+ µ+

1

2
,
1

2
;µ+ 1; k2

)
.

Then

I2n−1 =
n−1∑
µ=0

(
2n− 1

2µ

)
k2µB

(
1

2
, µ+

1

2

)
F

(
−n+ µ+

1

2
,
1

2
;µ+ 1; k2

)
.

Since

B

(
1

2
, µ+

1

2

)
=

Γ(1
2
)Γ(µ+ 1

2
)

Γ(µ+ 1)
=
π(2µ− 1)!!

2µµ!
.

For µ ≥ 1(
2n− 1

2µ

)
=

(
n− 1

µ

)
(2n− 1)(2n− 3) · · · (2n− 2µ+ 1)

(2µ− 1)!!
.

And(
2n− 1

2µ

)
B

(
1

2
, µ+

1

2

)
= π

(
n− 1

µ

)
(2n− 1)(2n− 3) · · · (2n− 2µ+ 1)

2µµ!
.

This proves the lemma. ♠

Lemma 6

F

(
−n+

1

2
,−n+ 1 +

1

2
; 1; k2

)
=

n−1∑
µ=0

(
n− 1

µ

)
(2n− 1)(2n− 3) · · · (2n− 2µ+ 1)

2µµ!

× k2µF

(
−n+ µ+

1

2
,
1

2
;µ+ 1; k2

)
(16)
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Proof: We expand the left side of (16) by using Gauss recursion formula [2]

γF (α, β; γ; z)− γF (α, β + 1; γ; z) + αzF (α+ 1, β + 1; γ + 1; z) ,

that is,

F (α, β; γ; z) = F (α, β + 1; γ; z)− αz

γ
F (α+ 1, β + 1; γ + 1; z) . (17)

We stop the expansion process when the second parameter β = 1
2

in
every hypergeometric function. Then we consider the coefficients of the terms
k2µF (−n+µ+ 1

2
, 1

2
;µ+ 1; k2) for each µ = 0, 1, 2, . . . , n− 1 in the expansion

before collecting them together. We find that for fixed n, the coefficients of
the term k2µF (−n+ µ+ 1

2
, 1

2
;µ+ 1; k2) are equal to

(2n− 1)(2n− 3) · · · (2n− 2µ+ 1)

2µµ!
,

for each µ = 0, 1, 2, . . . , n− 1 .

Moreover, in the expansion, the term

(2n− 1)(2n− 3) · · · (2n− 2µ+ 1)

2µµ!
k2µF (−n+ µ+

1

2
,
1

2
;µ+ 1; k2)

appears as many as
(

n−1
µ

)
times, µ = 0, 1, 2, . . . , n−1 . This finishes the proof

of the lemma. ♠

Remark 7 By Lemmas 1 and 2 and Theorem 3 we have

Up,q = 2Nπ2Cp,q

[
(q − 5)!!

(q − 2)!!

σqRq−3

(R2 − ρ2)q−3
F

(
3− q

2
,
5− q

2
; 1; k2

)
− (p− 5)!!

(p− 2)!!

σpRp−3

(R2 − ρ2)p−3
F

(
3− p

2
,
5− p

2
; 1; k2

)]
.



3 The cylindrical pore with infinite thickness E84

Remark 8 If wall of the cylindrical pore is of finite thickness, for example,
the radii of inner and outer cylinders are R1 < R2 respectively, the potential
is

Up,q(R1)− Up,q(R2) .

This was used in [3, 4].

Acknowledgment: This paper was supported by NSF of China under
grant No.20236010

References

[1] D. L. Feke, N. D. Prabhu, J. Adin. Mann, Jr., J. Adin. Mann, A
formulation of the short-Range repulsion between spherical colloidal
particles, J. Phys. Chem. 88(1988) 5735–5739. E71

[2] Ryshik,I.M., Gradstein, I.S., Tables of series, Products, and integrals,
Veb Deutscher Verlag der Wissenschaften: Berlin 1962. E75, E81, E83

[3] Zhang X., Wang W., A Potential Model for Cylindrical Pores, Chinese
J. of Chem. Eng. 9(4) (2001) 348–353. E84

[4] Zhang X., Wang W., Jiang, G, A potential model for cylindrical pores
with Lennard–Jones wall-fluid interaction, to appear. E84


	Introduction
	The cylindrical surface wall without thickness
	The cylindrical pore with infinite thickness
	References

