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Parametric space for nonlinearly excited phase
equation
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Abstract

Slow variations in the phase of oscillators coupled by diffusion is
generally described by a partial differential equation involving infinitely
many terms. We consider the case of nonlocal coupling and numerically
evaluate the ranges of parameters leading to different forms of a finite
truncation of the equation, namely a form based on nonlinear excitation
and a form based on linear excitation—the Kuramoto–Sivashinsky
equation.
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1 Introduction

In many situations reaction-diffusion systems can be reduced to systems of
oscillators coupled by diffusion. At first sight, the diffusion should always
equalise the phase of the oscillations throughout space. However, under
certain conditions, the dynamics can be much more complex. Generally, an
equation describing the dynamics of slow variations of the phase involves an
infinite number of terms [1],

∂tψ = a1∇2ψ+ a2(∇ψ)2

+ b1∇4ψ+ b2∇3ψ∇ψ+ b3(∇2ψ)2 + b4∇2ψ(∇ψ)2 + b5(∇ψ)4

+ g1∇6ψ+ g2∇5ψ∇ψ+ g3∇4ψ∇2ψ+ g4(∇3ψ)2 + g5∇4ψ(∇ψ)2

+ g6(∇2ψ)3 + g7∇3ψ∇2ψ∇ψ+ g8∇3ψ(∇ψ)3 + g9(∇2ψ)2(∇ψ)2

+ g10∇2ψ(∇ψ)4 + g11(∇ψ)6

+ e1∇8ψ+ · · · . (1)

Hereψ is the phase, and an, bn, gn, en, . . . are constant coefficients. The right-
hand side of (1) is virtually a Taylor series in small parameter ∇2 ∼ (1/L)2,
with L being the characteristic length presumed large. The balance of terms
in (1) takes different forms depending on the magnitudes and signs of the
coefficients. For example, when a1 > 0 and the initial field of ψ varies slowly
in space, the diffusion term dominates during the entire period of evolution.
In this case the equation is effectively reduced to the linear diffusion equation

∂tψ = a1∇2ψ , where a1 > 0 . (2)
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When a1 = −ε < 0 is small and, by the order of magnitude, a2 = 1 , b1 = −1 ,
Equation (1) reduces to the Kuramoto–Sivashinsky (ks) equation [2, 3],

∂tψ = −ε∇2ψ+ (∇ψ)2 −∇4ψ . (3)

The ks equation contains an anti-diffusion term (−ε∇2ψ), which represents
self-excitation; it is counterbalanced by the dissipative term (−∇4ψ). Taking
into account the smallness of ε, it is straightforward to show that the scales
of ψ and L resulting from the balance are such that the rest of the terms
in (1) are negligible compared to the three balancing terms on the right-hand
side of (3). Earlier [4, 5] we showed that a truncation based on nonlinear
excitation is also possible,

∂tψ = −ε∇2ψ (∇ψ)2 + (∇ψ)4 +∇6ψ . (4)

Equation (4), which we refer to as the nonlinearly excited phase (nep)
equation, is a reduced form of (1) when b4 = −ε , b5 = 1 and g1 = 1 . The
lower order terms preceding the above three on the right-hand side of (1) are
negligible provided the coefficients a1, a2, b1, b2 and b3 are small enough
or zero. Thus, these five coefficients alongside with the coefficient b4 must
satisfy certain requirements of smallness [6]; therefore, we have six conditions
in total.

We investigate the area in the space of independent parameters where (4) is
indeed a valid truncation of (1). Also, out of curiosity, we compare this area
with the area where a valid truncation is the ks equation.

2 Complex nonlocal Ginzburg–Landau

equation

Consider a reaction-diffusion system [6] that captures qualitative features of
some bio-systems, for example, cellular slime molds. Mathematically it is a
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slightly enhanced system compared to that of Tanaka and Kuramoto [7],

∂tX = f(X) + δ̂∇2X+ k1g1(S1) + k2g2(S2), (5)

τ1∂tS1 = −S1 +D∇2S1 + h1(X), (6)

τ2∂tS2 = −S2 +D∇2S2 + h2(X), (7)

where δ̂, k1, k2, τ1, τ2 and D are constants, and X, S1 and S2 represent the
concentrations of reactants. Equations (5)–(7) lead to a Ginzburg–Landau
equation for the complex amplitude A (which, loosely, is a measure of the
concentrations) with two nonlocal terms,

∂tA = µσA− β|A|2A+ δ∇2A+ k1η
′
1

∫
dr ′G1(r− r ′)A(r ′, t)

+ k2η
′
2

∫
dr ′G2(r− r ′)A(r ′, t), (8)

where Gn are coupling functions due to the presence of chemicals S1 and S2.
In one dimension,

Gn(x) =
1

2
(ζn + iηn)e

−(ζn+iηn)|x|, n = 1, 2 , (9)

with

ζn =

(
1+

√
1+ θ2n
2D

)1/2
and ηn =

(
−1+

√
1+ θ2n

2D

)1/2
. (10)

All the new parameters in (8)–(10) are constants. Rescaling (8) [6, 7] leads to

∂tA = A− (1+ ic2)|A|
2A+ (δ1 + iδ2)∇2A

+ K1(1+ ic11)

∫
dr ′G1(r− r ′)[A(r ′) −A(r)]

+ K2(1+ ic12)

∫
dr ′G2(r− r ′)[A(r ′) −A(r)] . (11)
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Here, δ1—the real part of δ—expresses the intensity of the diffusion, and
K1 and K2 are rescaled k1 and k2 respectively. It is important for our analysis
that Equation (11) contains the nine independent parameters: δ1, δ2, c11, c12,
c2, K1, K2, θ1 and θ2.

The complex amplitude A is connected to the real-valued amplitude, a, and
real-valued phase of the oscillations, ϕ, via A = ae−iϕ. Dynamically, the
terms A−(1+ic2)|A|

2A in (11) make a approach one, driven by ∂ta = a−a3.
Simultaneously the phase increases at a constant rate as ϕ = c2t . However,
due to the rest of the terms in (11), the phase is not exactly equal to c2t, so

ϕ = c2t+ψ . (12)

It can be shown that the phase departure, ψ, obeys Equation (1); the latter
was derived [6] from the Ginzburg–Landau equation (11) by decomposing all
the terms in a power series in ∇. As a result, each coefficient in equation (1)
emerges as a combination of the nine independent parameters. It was shown [6,
7] that the parameters K1 and K2 must satisfy the restriction

K1 + K2 < 1 . (13)

Another important restriction to meet is that the term g1∇6ψ be dissipative,
hence

g1 > 0 . (14)

3 Numerical results

Earlier we demonstrated [6] that there exist such values of the nine independent
parameters, θ1, θ2, c12, c11, c2, K1, K2 δ1 and δ2, that the six conditions of
smallness are satisfied, specifically, the smallness of b4 = −ε and smallness
of a1, a2, b1, b2 and b3. Additionally, the restrictions g1 > 0 , δ1 > 0

and K1 + K2 < 1 must be satisfied. To save space we do not present the
cumbersome expressions of a1, a2, b1, b2, b3, b4 and g1 in terms of the
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independent parameters but refer to earlier work [6] where these expressions
are presented. We wrote a computer program in reduce language and
computed the values of the parameters by solving the system of equations
representing the smallness conditions. We also computed the values of the
parameters that have to satisfy restrictions (13) and (14). Below we present
just one set of computed values as an example.

The code works better when we present the small b4 = −ε as a product of one
of the unknowns, say K1, and a small number, for example b4 = −K1 ·0.00001 .
For the input values θ1 = 5 , θ2 = 2 , c12 = 1 the computed output is: δ1 = 27 ,
K1 = 49 , K2 = −89 , g1 = 33 . We are satisfied to see that all the restrictions
are met,

g1 > 0 , δ1 > 0 and K1 + K2 < 1 . (15)

Clearly we can make b4 as close to zero as we wish. Thus, for the above
values of the independent parameters the nep equation is a valid truncation
of the phase equation (1).

Now we seek a range of the values of the parameters for which the nep
equation remains valid. Similarly to the numerical example, we execute the
following procedure. We assign values to three of the independent parameters,
choosing θ1, θ2 and c12. While these particular parameters have no a priori
preference over the other, our numerical code appears to work (that is,
guarantees convergence) only for certain chosen parameters. Thus, with
the above parameters prescribed, we computed the values of the other six
parameters from the list of nine. Finally, we inspect whether all the restrictions
are met, and, based on the outcome, conclude whether or not a particular
point in the 3D space (θ1, θ2, c12) is one where the nep equation is valid. If
at least one of the restrictions is violated, the nep equation is not valid. All
the points fall into the three groups:

• the points where the nep equation is valid, displayed as ‘o’;

• the points where the equation is not valid, displayed as ‘∗’; and

• the points, displayed as 2, for which we were unable to draw a conclusion
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about their validity as the computation took too long to finish.

For brevity we call the circles ‘valid’ points and the stars ‘invalid’.

For the reaction-diffusion system in question, we also investigated the validity
of the ks equation. The aim was to get some idea of how different the validity
areas are for the ks and nep equations, keeping in mind that the latter carries
considerably stricter conditions. The ks equation is valid when only one
condition on the coefficients is imposed,

a1 = −ε < 0 , (16)

and, additionally, the following restrictions are satisfied,

b1 < 0 , δ1 > 0 and K1 + K2 < 1 . (17)

Out of the nine independent parameters we had freedom to choose eight
so that the remaining parameter was to be computed from Equation (16).
We chose this computed parameter to be δ1. Again we consider the 3D
space (θ1, θ2, c12). As we move from point to point along the line, the values
of the three parameters change. For each point we assign values to the other
five free parameters at our disposal, c11, c2, K1, K2 and δ2. We opted to
take these values from the nep computational experiments, that is, from the
experiments executed at the same values of θ1, θ2 and c12. Lastly we need to
inspect if the restrictions (17) hold. If they do, the ks equation is valid at a
given point, otherwise it is not.

Figures 1–5 show the results along some randomly chosen lines (a more
complete investigation is under way). We make the following observations.
For the nep equation in Figure 1, the lower and upper ends of the line consist
of invalid points only—they extend to infinity. Only a short part of the shown
segment is made of valid points. For the ks equation, the lower end is made
of invalid points while the middle section has intermittent structure and the
upper end consists of valid points. This implies that the distance occupied
by the valid points is longer for the ks line. Figure 2 shows a line oriented
horizontally. The nep line consists of valid points in its middle part with an
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Figure 1: Valid and invalid points for the nep and ks equations along a
selected line.

inclusion of invalid points; along the ends it contains invalid points stretching
to infinity. By contrast, the ks line has ends made of valid points only. This
means that the distance over the entire (infinite) line covered by the valid
points are longer for the ks equation than that for the nep equation. Both
Figure 1 and Figure 2 seem unsurprising considering the ks equation results
from more relaxed conditions for the coefficients of the general phase equation.

In Figure 3, for the both nep and ks cases the line is made of a continuous
set of invalid points at the lower end, while the upper end is made of valid
points only; however, the ks line includes some invalid points in between.
Therefore, for the shown stretch of the line, the distance occupied by the valid
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Figure 2: A comparison along a different line.

points is longer for the nep equation than for the ks equation. In Figure 4 we
again observe a common feature between the lines: their lower ends consist
of invalid points. As in Figure 3, the ks line has inclusions of invalid points
in the middle section. Above certain—approximately equal—heights on the
lines we see uncertain points labelled by 2, for which we were unable to make
a conclusion about validity. If we disregard the uncertain points, then the
valid points for the nep equation appear to occupy a longer segment of the
shown piece of the line than they do for the ks equation. The structure of a
horizontal line in Figure 5 for the nep equation appears to be less intermittent
than that for the ks equation; however, the continua of valid points for the
both equations are comparable in length.
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Figure 3: A comparison along a different line.

4 Conclusion

Exploring a 9D space of independent parameters for a system of nonlocally
coupled oscillators is time consuming, so our analysis is by no means exhaus-
tive. A possible approach for a more complete investigation can be based on
a dense grid of lines piercing the 9D space. At this stage we determined only
few intervals of validity of the nonlinearly excited phase equation and, for
comparison, the ks equation. We pierced the 8D subspace spanned by the
parameters θ1, θ2, c12, c11, c2, K1, K2 and δ2 by a few lines. Of course we were
only able to graphically display a 3D subsubspace, spanned by θ1, θ2 and c12.
However, we emphasise that the lines in the 8D subspace were identical for
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Figure 4: A comparison along a different line.

both equations. At each point on the line a given equation is either valid
or invalid and sometimes our result was inconclusive due to computational
limitations. Qualitatively, in spite of the many conditions on the coefficients
of the general phase equation, the nep equation has an appreciable range of
validity in the 3D subsubspace. Recall that the reaction-diffusion systems
considered in this article involves only two nonlocality inducing chemicals,
S1 and S2. The validity range would expand if one adds more chemicals of
this kind into the model and thereby bring more degrees of freedom.
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Figure 5: A comparison along a different line.
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