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Stability and accuracy of various difference
schemes for the lattice Boltzmann method
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Abstract

We test a second order central difference scheme and a first order
upwind scheme for the advection of particles in the lattice Boltzmann
method for fluid flow. A diffusion term is added to the Boltzmann
equation in order to improve stability when using the second order
scheme, this term is equivalent to the Lax–Wendroff scheme for a par-
ticular value of the diffusion constant. In contrast to the normal lattice
Boltzmann method, we allow a particle Courant number less than one.
We test the schemes for stability and accuracy using Taylor–Green
vortex and channel flows in three dimensions, finding improved stability
for some configurations and no loss in accuracy. Both modifications are
expected to remove some spurious lattice invariants. The proposed par-
ticle diffusion term may also be used to improve the stability of other
Boltzmann based methods that use higher order difference schemes.
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1 Introduction

The lattice Boltzmann (lb) method is an increasingly popular means of
simulating fluid flow, the explicit and local nature of calculations make it an
attractive method for parallel computing. Others possible discretizations of
the discrete velocity Boltzmann equation include finite volume [1, 2], finite
difference [3] or finite element [4] schemes, in general proposed in order to
remove the requirement of a uniform grid. It is also possible to use an
interpolation supplemented scheme [5] in order to allow a non–uniform grid.
Our modified schemes are more closely related to normal lb methods, the grid
spacing is still uniform and neighbour nodes are still in the same direction as
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particle velocity vectors.

We test two modified difference schemes on a uniform grid in order to inves-
tigate the effects of the discretization on stability and accuracy. The first
modification is to use a non-unit particle Courant number and the second is
to use a second order central difference scheme for spatial derivatives. We
propose adding a particle diffusion term to improve stability when using the
second order central scheme. The particle diffusion increases the viscosity in
a predictable way and does not degrade the accuracy of the scheme, this is
equivalent to the Lax–Wendroff scheme for a particular value of the diffusion
constant. Both modifications are expected to remove the staggered invariant
described by Zanetti [6].

2 Discretizing the Boltzmann equation

The lattice Boltzmann method is one of many possible discretizations of the
discrete velocity Boltzmann equation,

∂fi(xα, t)

∂t
+ ciα∂αfi(xα, t) = Ωi(xα, t). (1)

The i subscripts denote discrete particle populations with a probability
density fi and velocity ciα. They are bold to distinguish them from Greek
subscripts, representing spatial dimensions using summation notation. The
left hand side represents the advection of particles and the collision operatorΩ
represents the effects of collisions between particles.

With normal lb methods, the particle velocities and grid spacing are such
that in one time step, particle populations travel exactly to the next site in
their path. This simplifies the implementation, allows the use of an upwind
collision operator and makes it easy to quantify and correct second order
diffusive discretization errors.
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2.1 First order upwind scheme

We take a forward Euler temporal discretization, a first order upwind spatial
discretization and an upwind collision operator to obtain,

fx,t+i − fx,ti

∆t
+ ‖ciα‖

fx,ti − fx−,t
i

‖∆xiα‖
= Ωx−,t

i . (2)

The discrete space unit ∆xiα is a different vector for each particle population
so is given an i subscript and we use the convention

fx±,t±
i = fi(xα ± ∆xiα, t± ∆t). (3)

Substituting in the particle Courant number,

Cr =
‖ciα‖∆t
‖∆xiα‖

, (4)

simplifies the time advancement:

fx,t+i = (1− Cr)fx,ti + Cr fx−,t
i + ∆tΩx−,t

i . (5)

When the Courant number is 1, the first term on the right hand side disappears
and the scheme reduces to the lattice Boltzmann method.

The commonly used single relaxation time collision operator adjusts particle
populations towards their equilibrium values feq,

Ωi(xα, t) = ω (feqi (xα, t) − fi(xα, t)) , (6)

and leads to the familiar form

fi(xα, t) = (1− ∆tω)fi(xα − ∆xiα,∆t) + ∆tωfeqi (xα − ∆xiα,∆t). (7)

With a suitable choice of lattice, and using a multi-scale expansion, Frisch
et al. [7] shown that this method approaches the incompressible Navier–
Stokes (ns) equations:

ρ (∂tuα + uβ∂βuα) = −∂αP + νρ∂β∂βuα . (8)
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The pressure is approximated by density and the viscosity is related to the
relaxation factor ω and the speed of sound cs:

P = c2sρ and ν = c2s

[
1

ω
−
1

2

∆t

Cr

]
. (9)

It is customary for ∆t, ∆xiα and ciα all to be set to 1. Due to space constraints,
the multi-scale expansion for our modified schemes is not included in this
article.

2.2 Second order central scheme

We propose adding a diffusion term along particle directions to the Boltzmann
equation to improve stability when using the second order central scheme:

∂fi(xα, t)

∂t
+ ciα∂αfi(xα, t) − αciαciβ∂α∂βfi(xα, t) = Ωi(xα, t). (10)

Using a forward Euler temporal discretization, second order central spatial
discretizations and a downwind collision operator we obtain,

fx,t+i − fx,ti

∆t
+ ‖ciα‖

fx+,t
i − fx−,t

i

2‖∆xiα‖
− α‖ciα‖2

fx+,t
i + fx−,t

i − 2fx,ti

‖∆xiα‖2
= Ωx−,t

i . (11)

Again we substitute the Courant number and the time advancement becomes

fx,t+i = fx,ti

(
1−

2αCr2

∆t

)
+ fx−,t

i

(
αCr2

∆t
+

Cr

2

)
+ fx+,t

i

(
αCr2

∆t
−

Cr

2

)
+ ∆tΩx−,t

i . (12)

Performing a multi-scale expansion and using a single relaxation time collision
operator we arrive at the incompressible Navier–Stokes equations again. This
time the viscosity is

ν = c2s

[
1

ω
+ α−

∆t

Cr

]
. (13)
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If ∆t, ∆xiα and ciα are all set to 1 and α = 0.5 , then this scheme reduces
exactly to the lattice Boltzmann method. Choosing α = 0.5∆t is equivalent
to the Lax–Wendroff second order difference scheme.

We define a cell Peclet number for particle advection:

Pe =
‖∆xiα‖ · ‖ciα‖
α‖ciα‖2

=
‖∆xiα‖
α‖ciα‖

. (14)

Neglecting the collision operator Ω, we might expect stability for Pe 6 2 .
This is in addition to any stability concerns of the lattice Boltzmann method
itself. In our experiments, ‖∆xiα‖ = ‖ciα‖ so the advection scheme should be
stable for α > 0.5 .

3 Accuracy

We tested the accuracy of the normal and modified schemes by simulating a
Taylor–Green vortex and channel flow and comparing the results to analytical
solutions. We use the single relaxation time collision operator and the d3q19
lattice for all simulations. Keeping in mind that the time step is not usually
varied in the lattice Boltzmann method, we change the non-dimensional time
step by varying the Mach number:

∆t∗ = ∆t
u0

l0
= ∆t

Ma

l0
cs . (15)

3.1 Channel flow

The first test was for steady state error of a laminar channel flow simulated
in three spatial dimensions. The flow was initialised to the analytical solution
and left to evolve until it reached a steady state. Trials were performed at a
range of Mach numbers and grid sizes shown in Table 1 with the Reynolds
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Table 1: Parameters tested for laminar channel flow.

Channel height 64 96 128 160 192

Mach number 0.10 0.08 0.06 0.04 0.02

number fixed at one. Each simulation was repeated using three discretizations.
First the normal lattice Boltzmann method, labelled as ‘upwind, dt = 1’,
then the first order difference scheme with a Courant number of 0.5 labelled
as ‘upwind, dt = 0.5’ and finally the second order scheme with α = 0.5∆t
and Cr = 0.5 labelled as ‘Lax–Wendroff, dt = 0.5’.

The error behaviour is linear with respect to Mach number (Figure 1) and we
compare the predicted error as Mach number (time step) approaches zero for
each grid size in Figure 2 finding second order slope for all schemes. Both
first order schemes have exactly the same error magnitude while the second
order scheme had approximately half the error.

3.2 Taylor–Green vortex

The Taylor–Green (tg) vortex is an unsteady flow with gradients in all
directions in contrast to channel flow which is steady in time and only has a
velocity gradient in one direction. We further tested the Mach number error
dependence using this flow by comparing the L2 norm of the error to the
analytical solution

u(x,y, t) = u0e
−2k20νt cos(k0x) sin(k0y),

v(x,y, t) = −u0e
−2k20νt sin(k0x) cos(k0y),

P(x,y, t) = P0 +
u20
4
e−4k

2
0νt cos(2k0x) cos(2k0y). (16)

The flow has a characteristic time t∗ and wavenumber k0:

t∗ = 2k20νt and k0 = l
−1
0 . (17)
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Figure 1: Mach number dependence with the normal scheme (above) and the
second order Lax–Wendroff scheme (below) for laminar channel flow.
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dt

dt

dt

dx

Figure 2: Spatial accuracy using 3D laminar channel flow, zero Mach number
extrapolation.

The same three schemes from the channel flow simulation were used again. For
all tests, the Reynolds number was kept at one and the domain was a 128 node
cube. The error was measured at a non dimensional time, t∗ = 1.3863, chosen
so that the characteristic velocity has reduced by a factor of four by this time.

The results, shown in Figure 3, show an order of accuracy that varies between
first and second order depending on Mach number. The results are slightly
inconsistent with channel flow simulations which showed a purely first order
Mach number dependence. The upwind scheme with reduced Courant number
had the lowest error at small Mach numbers while the Lax–Wendroff scheme
had slightly worse error. The Lax–Wendroff scheme was unable to complete
the lowest Mach number simulation due to instability.
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dt

dt
dt

Figure 3: Taylor–Green vortex simulation, L2 norm of error at non-dimensional
time t∗ = 1.3863.

4 Stability

The stability of the modified and original schemes was tested by performing
the same simulations at an increased Reynolds number. We have previously
verified that the normal lattice Boltzmann method successfully approaches
the correct statistics for turbulent channel flow [8] reaching similar conclusions
to Bespalko, Pollard and Uddin [9]. Initial simulations were performed using
the d3q19 lattice and Section 4.3 covers some additional experiments using
the d3q15 lattice.
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Table 2: Stability results for tg vortex.
Re Normal Cr = 0.5 Central Central

α = 0.491 α = 0.492
10, 000 stable stable unstable stable
15, 000 unstable unstable - unstable

Figure 4: Velocity magnitude plot of tg vortex at Re = 10, 000 and t =
10, 500.

4.1 Taylor–Green vortex

All tests of the tg vortex were done using a 128 node cube grid and a Mach
number of 0.05. Initial experiments with the second order central scheme
found that α = 0.492 was the minimum required for stability with a Reynolds
number of 10, 000. Next, all discretizations were run at Re = 15, 000 and
found to be unstable. Hence, the modified schemes do not degrade or enhance
stability for the turbulent tg vortex. The results are summarised in Table 2
and an example of the flow field is shown in Figure 4.
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Table 3: Stability results for turbulent channel flow using bounce back, Guo,
and equilibrium (Eq) boundary conditions. Time step when flow field becomes
non-physical shown for unstable runs.

Reτ Bounce back Guo Eq
normal Cr = 0.8 normal Cr = 0.8

180 stable stable stable stable stable
380 18, 000 stable 5, 500 stable stable
560 - stable - 40, 000 stable

4.2 Channel flow

The channel flow was tested at a range of wall Reynolds numbers

Reτ =
uτδ

ν
where, uτ =

√
ν
∂u

∂y

∣∣∣∣
y=0

. (18)

The stability was found to depend on boundary conditions. We tested three
different implementations of the solid wall boundary. The simplest is the
bounce back boundary condition. Here the solid wall bounces particles back
along their incoming direction. Another method is to set the equilibrium
and off-equilibrium parts of the distribution separately for boundary nodes
as proposed by Guo et al. [10]. The equilibrium part is calculated from the
prescribed velocity while the off-equilibrium part is copied from the nearest
neighbour node. It is also possible to simply set the boundary nodes to
equilibrium values at the expense of accuracy.

The stability results were the same for the first order upwind and second
order central schemes when Cr = 0.8 so separate results are not shown. The
highest achievable Reynolds number was increased for the Guo and bounce
back boundary conditions by using the modified schemes. The equilibrium
boundary condition was stable over all Reynolds numbers even with the
normal discretization. This indicates that the dominant instability is related
to the boundary condition used.
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Figure 5: Velocity magnitude plot showing instabilities for bounce back
bc (left), Guo bc (middle) and bounce back bc with d3q15 lattice (right).

4.3 Fifteen speed lattice

Previous results were obtained using the d3q19 lattice. We also tested the less
computationally intense d3q15 lattice. Results for the tg vortex showed no
difference in stability while the channel flow showed much worse stability with
the fifteen speed lattice. Simulations using this lattice quickly became unstable
even at Reτ = 180 using the Guo and bounce back boundary conditions.
Although the equilibrium boundary condition was stable with this lattice,
it showed visible artifacts. The modified schemes with Cr = 0.8 removed
all artifacts and allowed stable simulation using all boundary conditions at
Reτ = 180.

5 Discussion

As expected the second order central scheme was generally not stable without
any diffusion. Even with the correct amount of diffusion so that the scheme
was equivalent to the Lax–Wendroff scheme, Taylor–Green vortex simulations
with Re = 1 were not stable over the whole range of parameters. Unstable
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simulations would proceed for some time with non-physical wiggles setting
in eventually. The minimum amount of diffusion required to ensure stability
varied depending on the flow configuration and as predicted, was always
below α = 0.5 approaching this value for turbulent flows. Thus, the proposed
method of adding particle diffusion stabilised the second order central scheme
to the point where it had similar stability properties to other schemes for the
flows investigated.

Reducing the particle Courant number below one allows significant stability
improvements for the simulation of turbulent channel flow. One explanation
for the stability behaviour may be due to lattice invariants, mentioned by
Zanetti [6] when dealing with lattice gas cellular automata. Ginzburg et
al. [11] and d’Humieres et al. [12] gave a more recent discussion and note
that the effects depend on the boundary condition used. In general, these
invariants arise due to particle populations moving discretely from one lattice
site to another, so using a Courant number smaller than one removes them.
Fractional propagation was first suggested by Qian [13] as a means of removing
lattice invariants from one dimensional cellular automata (an early predecessor
to lb methods).

The two modified schemes presented in this article simulate the incompressible
Navier–Stokes equations with at least the same accuracy as the normal lattice
Boltzmann method. The normal first order discretization with a Courant
number smaller than one may provide increased stability for any simulation
using solid wall boundary conditions particularly if the d3q15 lattice is to be
used. The proposed particle diffusion term may also find application for other
discretizations of the Boltzmann equation where higher order differencing is
desirable.
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