A continuum model of the growth of engineered epidermal skin substitutes

Authors

  • Matthew Philip Adams Queensland University of Technology
  • Dann G. Mallet Mathematical Sciences School, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001
  • G. J. Pettet Mathematical Sciences School, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001

DOI:

https://doi.org/10.21914/anziamj.v53i0.5075

Keywords:

epidermis, epithelium, skin substitute, porous medium, calcium gradient

Abstract

We present a porous medium model of the growth and deterioration of the viable sublayers of an epidermal skin substitute. It consists of five species: cells, intracellular and extracellular calcium, tight junctions, and a hypothesised signal chemical emanating from the stratum corneum. The model is solved numerically in Matlab using a finite difference scheme. Steady state calcium distributions are predicted that agree well with the experimental data. Our model also demonstrates epidermal skin substitute deterioration if the calcium diffusion coefficient is reduced compared to reported values in the literature. References
  • M. P. Adams, D. G. Mallet, and G. J. Pettet. Active regulation of the epidermal calcium profile. J. Theor. Biol., 301:112--121, 2012. doi:10.1016/j.jtbi.2012.02.017
  • J. M. Anderson. Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci., 16:126--130, 2001. http://physiologyonline.physiology.org/content/16/3/126.full.pdf
  • M. J. Behne, C.-L. Tu, I. Aronchik, E. Epstein, G. Bench, D. D. Bikle, T. Pozzan, and T.M. Mauro. Human keratinocyte {ATP2C1} localizes to the Golgi Ca2+ stores. J. Invest. Dermatol., 121:688--694, 2003. doi:10.1046/j.1523-1747.2003.12528.x
  • J. M. Brandner, S. Kief, C. Grund, M. Rendl, P. Houdek, C. Kuhn, E. Tschachler, W. W. Franke, and I. Moll. Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur. J. Cell Biol., 81:253--263, 2002. doi:10.1078/0171-9335-00244
  • M. Cavey, M. Rauzi, P.-F. Lenne, and T. Lecuit. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature, 453:751--756, 2008. doi:10.1038/nature06953
  • A. Celli, S. Sanchez, M. Behne, T. Hazlett, E. Gratton, and T. Mauro. The epidermal Ca2+ gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys. J., 98:911--921, 2010. doi:10.1016/j.bpj.2009.10.055
  • W. Pereira da Silva and C. Pereira da Silva. xyExtract Graph Digitizer (online), 3 March 2011. http://zeus.df.ufcg.edu.br/labfit/index_xyExtract.htm
  • B. Forslind, G. M. Roomans, L.-E. Carlsson, K. G. Malmqvist, and K. R. Akselsson. Elemental analysis on freeze-dried sections of human skin: studies by electron microprobe and particle induced X-ray emission analysis. Scan. Electron Microsc., Pt. 2:755--759, 1984. http://www.ncbi.nlm.nih.gov/pubmed/6091258
  • S. Gibbs, J. Vicanova, J. Bouwstra, D. Valstar, J. Kempenaar, and M. Ponec. Culture of reconstructed epidermis in a defined medium at 33C shows a delayed epidermal maturation, prolonged lifespan and improved stratum corneum. Arch. Dermatol. Res., 289:585--595, 1997. doi:10.1007/s004030050244
  • H. Hennings, D. Michael, C. Cheng, P. Steinert, K. Holbrook, and S. H. Yuspa. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell, 19:245--254, 1980. doi:10.1016/0092-8674(80)90406-7
  • D. L. Johnson, J. Koplik, and R. Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176:379--402, 1987. doi:10.1017/S0022112087000727
  • M. Kurasawa, T. Maeda, A. Oba, T. Yamamoto, and H. Sasaki. Tight junction regulates epidermal calcium ion gradient and differentiation. Biochem. Biophys. Res. Commun., 406:506--511, 2011. doi:10.1016/j.bbrc.2011.02.057
  • Y.-H. Li and S. Gregory. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Ac., 38:703--714, 1974. http://www.soest.hawaii.edu/oceanography/faculty/yhli/1974a.pdf
  • G. K. Menon, S. Grayson, and P. M. Elias. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J. Invest. Dermatol., 84:508--512, 1985. doi:10.1111/1523-1747.ep12273485
  • C. Michels, S. Y. Aghdam, and C. M. Niessen. Cadherin-mediated regulation of tight junctions in stratifying epithelia. Ann. N. Y. Acad. Sci., 1165:163--168, 2009. doi:10.1111/j.1749-6632.2009.04443.x
  • C. P. Please, G. Pettet, and D. L. S. McElwain. A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett., 11:89--94, 1998. doi:10.1016/S0893-9659(98)00038-X
  • C. S. Potten and C. Booth. Keratinocyte stem cells: a commentary. J. Invest. Dermatol., 119:888--899, 2002. doi:10.1046/j.1523-1747.2002.00020.x
  • M. Reiss, L. R. Lipsey, and Z.-L. Zhou. Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes. J. Cell Physiol., 147:281--291, 1991. doi:10.1002/jcp.1041470213
  • R. Tammi. A histometric and autoradiographic study of hydrocortisone action in cultured human epidermis. Br. J. Dermatol., 105:383--390, 1981. doi:10.1111/j.1365-2133.1981.tb00769.x
  • J. Vicanova, E. Boelsma, A. M. Mommaas, J. A. Kempenaar, B. Forslind, J. Pallon, T. Egelrud, H. K. Koerten, and M. Ponec. Normalization of epidermal calcium distribution profile in reconstructed human epidermis is related to improvement of terminal differentiation and stratum corneum barrier formation. J. Invest. Dermatol., 111:97--106, 1998. doi:10.1046/j.1523-1747.1998.00251.x

Author Biography

Matthew Philip Adams, Queensland University of Technology

PhD student

Published

2012-05-03

Issue

Section

Proceedings Engineering Mathematics and Applications Conference