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Abstract

Stable nonlinear beams, both solitary waves (nematicons) and
optical vortices, can form in a nematic liquid crystal due to a balance
between the nonlinear, nonlocal response of the nematic and the
diffractive spreading of the light beam. The ‘huge’ nonlinearity of a
nematic liquid crystal makes it ideal for the experimental development
of photonic devices as nonlinear effects occur over millimetre distances.
In this work, a simple and fast method to analyse the trajectory of a
nonlinear beam within a finite liquid crystal cell, based on a classical
method not explored in this context, the method of images, is developed.
With the orientation of the nematic molecules modelled using images,
the evolution of the beam is obtained by using both asymptotics and
modulation theory. The efficiency of this new method is shown by
comparisons with a standard Fourier series solution for the nematic
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response and full numerical solutions of the governing equations. It
is found that only a small number of images is required compared
with the usual Fourier series technique in order to obtain excellent
agreement with full numerical solutions. Finally, the contrasting effect
of the cell boundaries on a nematicon and a vortex is explored.
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1 Introduction

The propagation of light in liquid crystals has captured the attention of
experimentalists for decades. The nematic phase of a liquid crystal is ideal
for the propagation of nonlinear beams due to its ‘huge’ nonlinearity, so that
nonlinear effects are observed over millimetre distances. Nematic liquid crys-
tals (nlc) also have a ‘nonlocal’ response, so that the effect of an optical beam
on the nematic extends far beyond the beam waist. This nonlocal response
stops the collapse of 2D bulk solitary waves [5, 6, 11], termed ‘nematicons’,
and optical vortices [14, 16]. Experiments conducted using nlc have shown
the medium to be advantageous for use in all-optical devices, including circuits
and logic gates [4, 5, 10], due to the possibility for reconfigurable waveguides.
To overcome the Freédericksz threshold [9] the nematic molecules are pre-
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tilted, which is done by either applying an external static electric field to the
cell [5, 6] or by ‘rubbing’ the cell walls to induce an alignment of the nematic
molecules at the walls, which is then propagated into the bulk of the cell due
to elastic forces [1, 3]. The second mechanism is considered here.

This work contrasts the evolution of a nematicon and an optical vortex as
they propagate down a cell. This evolution is studied using a hybrid technique
based on an exact solution for the nematic response and a Lagrangian for-
mulation, termed modulation theory [15], for the optical beam. The nematic
response is found from a Green’s function solution derived using the method
of images (moi) [7]. The Green’s function solution is shown to be equivalent
to the usual Fourier series solution, but is superior as far less terms are needed
to obtain good agreement with full numerical solutions. A further advantage
of the approximate technique of the present work is that it includes the effect
of the diffractive radiation shed by the nematicon as it evolves [8, 13]. It is
found that the cell boundaries do not affect the stability of a nematicon, but
can excite the mode 2 azimuthal instability [14, 16] of an optical vortex.

2 Modulation theory

A linearly polarised coherent light beam is inputted into a planar nematic
liquid crystal cell. We take the z direction as the beam propagation direction,
the x direction as the direction of beam polarisation, with y completing
the coordinate system. A nonlinear beam then occurs due to a balance
between linear diffraction and the self-focusing of the beam. To obtain a
beam at milliwatt power levels, the nematic molecules are pre-tilted at an
angle θ0 ∼ π/4 to the z direction by rubbing of the cell walls, thus eliminating
the Freédericksz threshold [6, 9]. The non-dimensional equations governing
the propagation of the nematicon in the paraxial approximation are [1, 2, 3]

i
∂E

∂z
+
1

2
∇2E+ 2Eθ = 0 , ν∇2θ = −2|E|2. (1)
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Here the Laplacian ∇2 is in the (x,y) plane. The left-hand equation of (1) is
a nonlinear Schrödinger-type equation governing the electric field E of the
light beam, with z being a time-like coordinate. The right-hand equation
of (1) is the director (a Poisson) equation which governs the perturbation θ
of the nematic molecules from the pre-tilt angle θ0. The parameter ν is the
intermolecular elasticity parameter of the liquid crystal, with large values
corresponding to a nonlocal response. In experiments ν = O(100) [6]. The
geometry of the cell is rectangular, 0 6 x 6 Lx and 0 6 y 6 Ly . The
anchoring conditions give θ = 0 at x = 0,Lx and y = 0,Ly . The director
equation in (1) can be solved using a Green’s function, G(x,y; x ′,y ′), with

θ = −
2

ν

∫Ly
0

∫Lx
0

G(x,y; x ′,y ′)|E(x ′,y ′)|2 dx ′ dy ′ . (2)

The electric field equation in (1) then has the Lagrangian

L = i(E∗Ez − EE
∗
z ) − |∇E|2 − 4

ν
|E|2
∫Ly
0

∫Lx
0

G(x,y; x ′,y ′)|E(x ′,y ′)|2 dx ′ dy ′ ,

(3)
where the superscript ∗ denotes the complex conjugate.

Let us first consider the evolution of a nematicon. The nematicon equations (1)
have no known exact solitary wave solution. A hybrid method based on
Lagrangian techniques [15] and exact solutions is developed and studied here.
This is based on the Gaussian trial function

E =
(
ae−r

2/w2

+ ig
)
eiφ (4)

for the nematicon profile [8, 12]. Here r2 = (x − ξ)2 + (y − η)2 and φ =
σ+Vx(x−ξ)+Vy(y−η). The amplitude a, width w, phase σ, position (ξ,η),
velocity (Vx,Vy) and g are all functions of z. The trial function is circularly
symmetric. In experiments the beam has been measured to have a slight
elliptic cross section [4]. The first term in the trial function is a varying solitary
wave-like beam. The second term is related to the shelf of low wavenumber
diffractive radiation that accumulates under the evolving nematicon [8, 13].
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This shelf is π/2 out of phase with the nematicon [8]. The Green’s function
for the director, right-hand equation in (1) is [7]

G(x,y; x ′,y ′) = −
1

2π
ln f(x,y, x ′,y ′). (5)

The Green’s function is constructed by reflections of the point source at (x ′,y ′)
in the cell walls, symmetrically creating a series of positive (source) and
negative (sink) images across the lattice in order to satisfy the zero boundary
conditions. This process is illustrated in Figure 1.

As the function f in (5) has only simple poles and simple zeros, the simplest
analytical expression for f is in terms of elliptic functions [7]

f(x,y) =
σ(z− ζ)σ(z+ ζ)

σ(z− ζ∗)σ(z+ ζ∗)
, σ(z) = z

∏
ω 6=0

[(
1−

z

2ω

)
ez/2ω+z2/8ω2

]
, (6)

with z = x + iy , ζ = x ′ + iy ′ and ω = nLx + imLy . In the nonlocal limit
with ν large the beam is much narrower than the director response. Hence,
the beam |E|2 in (2) is approximated by a delta function, resulting in

θ =
a2w2

4ν
<

{
σ(z−ψ)σ(z+ψ)

σ(z−ψ∗)σ(z+ψ∗)

}
, where ψ = ξ+ iη . (7)

The Green’s function can also be expressed in terms of a Fourier sine series.
The Green’s function G(x,y; x ′,y ′) satisfies ∇2G(x,y; x ′,y ′) = δ(x−x ′)δ(y−
y ′) with homogeneous boundary conditions. It can then be found to be

G(x,y; x ′,y ′) =
4

π2LxLy

∞∑
n,m=1

φn(ξ)φm(η)φn(x)φm(y)

(
n2

L2x
+
m2

L2y

)−1

, (8)

where the eigenfunctions areφn(x) = sin(nπx/Lx) andφm(y) = sin(mπy/Ly).

Substitution of the trial function (4) for the optical beam and the director
solution (7) into the Lagrangian (3) and averaging by integrating in x and y
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Figure 1: Method of images, depicting the sources (red or dark squares) and
sinks (green or light squares) over the constructed lattice for the first eight
images.

over the cell gives the averaged Lagrangian [15]

L = −2

(
1

4
a2w2 +Λg2

)(
σ ′ − Vxξ

′ − Vyη
′ +

1

2
V2x +

1

2
V2y

)
− aw2g ′

+ gw2a ′ + 2agww ′ −
a2

2
+
a4w4

4ν
[−∆1 − ∆2 + ∆3 + ∆4] . (9)
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Here

∆1 = ln
w√
2
−
γ

2
− ln 2+ ln

√
ξ2 + η2 − ln(ξη), (10)

∆2 =

∞∑
n,m=−∞

[
1

2
ln

(
(nLx − ξ)

2 + (mLy − η)
2

n2L2x +m
2L2y

)

+
(ξ2 − η2)(n2L2x −m

2L2y) + 4nmξηLxLy

2(n2L2x +m
2L2y)

2

]
, (11)

∆3 =

∞∑
n,m=−∞

[
1

2
ln

(
n2L2x + (mLy − η)

2

n2L2x +m
2L2y

)
+
η2(n2L2x −m

2L2y)

2(n2L2x +m
2L2y)

2

]
, (12)

∆4 =

∞∑
n,m=−∞

[
1

2
ln

(
(nLx − ξ)

2 +m2L2y

n2L2x +m
2L2y

)
+
ξ2(n2L2x −m

2L2y)

2(n2L2x +m
2L2y)

2

]
, (13)

where γ is Euler’s constant, γ = 0.577215665 . Taking variations of this
averaged Lagrangian with respect to the nematicon parameters gives the
modulation equations for the evolution of the beam. One major effect of
non-locality is to shift the point at which the nematicon sheds diffractive
radiation from the edge of the shelf to a new radius ˜̀ from the nematicon
position (ξ,η), this being the edge of the director response, termed the outer
shelf radius [13]. In the present case of a finite cell the director response
extends to the cell walls, so that the diffractive radiation is shed in a boundary
layer at the cell walls. Hence ˜̀ = min (Lx/2,Ly/2) and Λ̃ = ˜̀2/2 .

The modulation equation for g (not shown) can be used to find the rela-
tionship between the steady state amplitude â and width ŵ, â2 = 4ν/ŵ4.
Nöther’s Theorem can then be used on the Lagrangian (3) to find the energy
conservation equation for the nematicon, from which the steady state can be
determined from the input beam. The length of the shelf of radiation under
the beam is ` = 3βπ2ŵ/8 [8, 12], where β is constant. The choice β = 0.4
gives good agreement with the period of numerical solutions [12].
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Figure 2: Comparison between: the full numerical solution, —— (full, red
line); method of images solution, − − − − − (dashed, green line); and
images solution with eight images, ·− ·− ·− ·− ·− (dot-dashed, blue line);
for the (a) amplitude a and (b) x-y position for a rectangular cell. The
initial values are a = 2.5 , w = 4 , ξ = 40 , η = 85 , Vx = 0 and Vy = 0 with
ν = 200 , Lx = 50 and Ly = 100 .
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3 Optical vortex

Let us now consider the evolution of an optical vortex, which is a nonlinear
beam with a 2nπ phase increase, n an integer, around a central phase
singularity at which the beam amplitude is zero. The cell configuration is the
same as that for the nematicon of Section 2. The governing equations for
the electric field envelope and the director response (1) remain the same as
those for the nematicon. An optical vortex has a symmetry breaking mode 2
azimuthal instability [11]. However, in an unbounded cell, sufficiently large
values of the non-locality ν, ν = O(100), stabilise the vortex [14, 16]. A
modulation theory for the evolution of an optical vortex is developed in an
analogous fashion to that for a nematicon in Section 2, based on the vortex
trial function

E = are−r
2/w2

ei(φ+ϕ) + igei(φ+ϕ), (14)

where the definitions correspond to those presented in Section 2, with the
exception that ϕ is the polar angle relative to the vortex centre r = 0 . The
major difference for a vortex in the present finite cell to previous work is that
interaction with the cell walls can destabilise the vortex, even for values of ν
for which the vortex is stable away from the walls.

4 Results and discussion

The modulation equations for the nematicon were solved numerically using
the standard fourth order Runge–Kutta method. These solutions were then
compared with full numerical solutions of the nematicon equations (1). The
electric field equation in (1) was solved using standard, second order, centred
differences, for the Laplacian ∇2E and a second order, predictor-corrector
method based upon the second order Runge–Kutta method to advance in z,
with the initial condition given by the trial function (4) for the electric field E
with g = 0 . The Laplacian ∇2θ for the director equation in (1) was again
approximated using second order, centred differences, and Jacobi iteration was
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Figure 3: Full numerical solutions for a vortex. From top to bottom z = 0 ,
z = 100 and z = 170 . The initial values are a = 0.15 , w = 8 , ξ = 50 ,
η = 50 , Vx = 0.6 and Vy = 0 in (14) with ν = 200 , Lx = 100 and Ly = 100 .
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used to solve the resulting linear system. The step sizes ∆x = ∆y = 0.2 and
∆z = 0.001 were used. The simulation of a nematic cell with a rectangular
cross-section mimicking the experimental set-up [1, 3] was considered with
a typical non-dimensional non-locality parameter value ν = 200 . The full
numerical scheme for the optical vortex was the same as that for the nematicon,
but the initial condition for the electric field was given by (14) with g = 0 .

Figure 2 shows the excellent agreement of the moi solution with only eight
image points with the full numerical solution, indicating the efficiency of using
the method of images to calculate the nematic response. The nematicon’s
position evolution is shown in Figure 2(b), and again excellent agreement with
the numerical solution is seen. These results show that the method of images
can provide an important tool for experimental studies, as the hybrid solution
is easily applicable to many other scenarios and requires minimal cpu time
in comparison with full numerical solutions. The nematicon ‘bounces’ around
the cell as it propagates, as shown in Figure 2(b). This spiralling behaviour is
linked to the repulsive nature of the cell walls acting on the nematicon [1, 3].

Away from the cell walls, for ν = 200 , as used here, an optical vortex is

stable. For low values of the initial speed
√
V2x + V

2
y the vortex remains stable

and has the same spiralling trajectory down the cell as for a nematicon, with
similar excellent agreement between the modulation and numerical solutions.
Increasing the initial speed forces the vortex closer to the cell walls. At
sufficiently close approach for sufficiently high initial speed, the interaction
with the boundary excites the mode 2 azimuthal instability [14, 16] and the
vortex breaks up into two nematicons. For instance, if the vortex is initially
propagated in the x direction, for velocities Vx < Vthr the vortex bounces
off the cell wall. However, if Vx > Vthr ∼ 0.6 the close interaction with
the cell walls excites the mode 2 instability, causing the vortex to pinch off
symmetrically and so split into two nematicons which rotate around a shared
centre of mass due to conservation of angular momentum. This process is
illustrated in Figure 3 for Vx = 0.6 . Numerical solutions indicate that the
critical initial speed is related to the width of the initial vortex.
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In this article the effect of cell boundaries on a nematicon and an optical
vortex propagating in a finite nematic liquid crystal cell was studied. A
hybrid technique was used to find an approximate solution of the nematicon
equations (1) with the director equation in (1) being solved exactly using the
moi to construct a Green’s function solution. The moi Green’s function was
shown to be equivalent to the usual Fourier series eigenfunction expansion.
The advantages of the present technique were illustrated by comparisons with
full numerical solutions. Not only is the technique straightforward in its
application, it is also computationally very efficient. This is due to very few
images being needed to provide an accurate solution. The present technique
can be extended to many other cell configurations for which the director
equation can be solved using the moi. The fundamental differences between
nematicon and vortex evolution in a finite cell were also illustrated.
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