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Abstract

There is empirical evidence that recovery rates tend to go down
just when the number of defaults goes up in economic downturns. This
has to be taken into account in estimation of the capital against credit
risk required by Basel II to cover losses during the adverse economic
downturns; the so-called “downturn Loss Given Default” requirement.
This article presents a methodology for estimation of the Loss Given
Default credit risk model with the default and recovery dependent via
the latent systematic risk factor using a Bayesian inference approach
and Markov chain Monte Carlo method. This approach allows joint
estimation of all model parameters and latent systematic factor, and all
relevant uncertainties. For illustration, we fit the model using Moody’s
annual default and recovery rates for corporate bonds for the period
1982–2010.
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1 Introduction

Default and recovery rates are key components of Loss Given Default (lgd)
models proposed for calculation of economical capital (ec) against credit
risk. The classic lgd model implicitly assumes that the default rates and
recovery rates are independent. Motivated by empirical evidence that recovery
rates tend to go down just when the number of defaults goes up in economic
downturns, Frye [3], Pykhtin [9] and Düllmann and Trapp [2] extended the
classic model to include dependence between the default and recovery via
a common systematic factor. These models have been suggested by some



2 Loss Given Default model C187

banks for assessment of the Basel II “downturn lgd” requirement [1]. The
Basel II “downturn lgd” reasoning is that recovery rates may be lower during
economic downturns when default rates are high; and that a capital should be
sufficient to cover losses during these adverse circumstances. The extended
models represent an important enhancement of credit risk models used in
earlier practice, such as CreditMetrics and CreditRisk+, that do not account
for dependence between default and recovery.

Publicly available data provided by Moody’s or Standard&Poor’s rating
agencies are annual averages of defaults and recoveries. These data are of
limited size, covering a couple of decades at most. As shown in this article, the
impact of the parameter uncertainty on capital estimate can be very significant,
due to the limited data size. To our knowledge, the quantitative impact of
parameter uncertainty has not been specifically addressed. Increasingly,
quantification of parameter uncertainty and its impact on ec has become
a key component of financial risk modeling and management; Luo et al. [5]
and Peters et al. [8] recently gave examples in operational risk and insurance.
This article studies parameter uncertainty and its impact on ec estimate
in the lgd model, where default and recovery are dependent via the latent
systematic risk factor. We demonstrate how the model can be estimated
using the Bayesian approach and Markov chain Monte Carlo (mcmc) method.
This approach allows joint estimation of all model parameters and latent
systematic factor, and all relevant uncertainties.

2 Loss Given Default model

Following previous studies [2, 3, 9], consider a homogenous portfolio of
J borrowers over a chosen time horizon. To avoid cumbersome notation,
we assume that the jth borrower has one loan with principal amount Aj. The
loss rate (loss amount relative to the loan amount) of the portfolio due to
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defaults is

L =

J∑
j=1

wjLj =

J∑
j=1

wjIj max(1− Rj, 0), (1)

where wj is the weight of loan j, wj = Aj/
∑J

m=1Am ; Lj is the loss rate of
loan j due to potential default; 1−max(1−Rj, 0) is the recovery rate of loan j
after default; Ij is an indicator variable associated with the default of loan j,
Ij = 1 if firm j defaults, otherwise Ij = 0 . In general Rj is not the same as
the recovery rate since the latter is subject to a cap of one.

Denote the probability of default for firm j by p, that is, Pr[Ij = 1] = p . Let
Cj be an underlying latent random variable (financial well-being) such that
firm j defaults if Cj < Φ

−1(p), where Φ(·) is the standard normal distribution
and Φ−1(·) is its inverse. That is, Ij = 1 if Cj < Φ

−1(p) and Ij = 0 otherwise.
The value Cj for each firm depends on a systematic risk factor X and a firm
specific (idiosyncratic) risk factor ZCj as

Cj =
√
ρX+

√
1− ρZCj , (2)

where ZC1 , . . . ,ZCJ are all independent. Also, X and ZCj are assumed inde-
pendent and from the standard normal distribution. Conditional on X, the
financial conditions of any two firms are independent. Unconditionally, ρ is
the correlation between the financial conditions of two firms.

Several studies [2, 3, 9] considered normal, lognormal and logit-normal dis-
tributions for the recovery. It was shown by Düllmann and Trapp [2] that
ec estimates from these three recovery models are very close to each other;
the difference is within 2%. In addition, statistical tests favoured the normal
distribution model. Thus we model the recovery rate as

Rj = µ+ σ
√
ωX+ σ

√
1−ωZj , ω ∈ [0, 1], (3)

where X and Zj are assumed independent and from the standard normal
distribution. Also, Zj and ZCj are assumed independent. The recovery and
default processes are dependent via systematic factor X.
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Algorithm 1: Quantile for given parameters.

1. Draw an independent sample from Φ(·) for the systematic factor X.
2. For each j, draw ZCj from Φ(·); calculate Cj and Ij.

3. For each j, draw Zj from Φ(·), find Rj = µ+ σ
√
ωX+ σ

√
1−ωZj .

4. Find loss L for the entire portfolio using (1), that is, a sample
from FL(· | θ).

5. Repeat steps 1–4 to obtain N samples of L.
6. Estimate Qq(θ) using obtained samples of L in the standard way.

3 Economic capital

It is common to define the ec for credit risk as a high quantile of the
distribution of loss L, that is,

Qq(θ) ≡ Qq = inf{z : Pr[L > z | θ] 6 1− q} = inf{z : FL(z | θ) > q}, (4)

where q is a quantile level; FL(z | θ) is the distribution function of the loss L
with the density denoted as fL(z | θ); and θ = (p, ρ,µ,σ,ω) is the vector of
model parameters.

The ec measured by the quantile Qq(θ) is a function of θ. Typically,
given observations, the maximum likelihood estimator (mle) θ̂ is used as
point estimate for θ. Then, the loss density for the next time period is
estimated as fL(z | θ̂) and its quantile, Qq(θ̂), is used for ec calculation. The
distribution of L is not tractable in closed form for an arbitrary portfolio. In
this case the Monte Carlo method can be used with the logical steps specified
in Algorithm 1.

Bank loans are subject to the borrower specific risk and systematic risk.
In the case of a diversified portfolio with a large number of borrowers, the
idiosyncratic risk can be eliminated and the loss depends on X only. Gordy [4]
showed that the distribution of portfolio loss L has a limiting form as J→ ∞ ,
provided that each weight wj goes to zero faster than 1/

√
J. The limiting
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loss rate L∞ is given by the expected loss rate conditional on X:

L∞ ≡ L∞(X) =

J∑
j=1

wjE[Ij | X]E[max(1− Rj, 0) | X] = Λ(X)S(X), (5)

where Λ(X) = E[Ij | X] is the conditional probability of default of firm j

and S(X) = E[max(1 − Rj, 0) | X] is the conditional expected value of loss
rate. That is, the distribution of L∞ is fully implied by the distribution of X.
Because L∞(X) is a monotonic decreasing function and X is from the standard
normal distribution, the quantile of L∞(X) at level q can be calculated as
Q∞
q = L∞ (X = Φ−1(1− q)

)
. Like Düllmann and Trapp [2], we define ec of

the diversified portfolio loss distribution L∞(X) as the 0.999 quantile

ec∞ = Q∞
0.999 = L

∞ (Φ−1(0.001)
)
= pd× lgd, (6)

where pd = Λ(Φ−1(0.001)) and lgd = S(Φ−1(0.001)) are stressed probabil-
ity of default (stressed pd) and stressed loss given default (stressed lgd)
respectively. Using (2), the conditional probability of default is

Λ(X) = Φ

(
Φ−1(p) −

√
ρX√

1− ρ

)
. (7)

Also, the expected conditional loss rate for the normally distributed recovery
rate model (3) is easily calculated as

S(X) =

∫∞
−∞ max

(
1− µ− σ

√
ωX− σ

√
1−ωz, 0

)
fN(z)dz

=
(
1− µ− σ

√
ωX
)
Φ(zc) +

σ
√
1−ω√
2π

e−z
2
c/2, (8)

where zc =
(
1− µ− σ

√
ωX
)
/
(
σ
√
1−ω

)
and fN(z) is the standard normal

density. For the real data used in this study, it is well approximated as
S(X) ≈ E[(1− Rj) | X] = 1− µ− σ

√
ωX .
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4 Likelihood function

Consider time periods t = 1, . . . , T (so that T + 1 corresponds to the next
future year), where the following data of default and recovery for a loan
portfolio of Jt firms are observed: Dt is the number of defaults in year t,
and its realization is dt; Ψt = Dt/Jt is the default rate in year t, and its

realization is ψt; Rt =
∑Dt

j=1 Rj(t)/Dt is the average recovery rate in year t,
where R1(t), . . . ,RDt

(t) are individual recoveries, and its realization is rt.
Also, the systematic factor X corresponding to the time periods is denoted as
X1, . . . ,XT+1 and its realization is x1, . . . , xT+1 . We assume that X1, . . . ,XT+1
are independent and all idiosyncratic factors (Zj,Z

C
j ) corresponding to the

time periods are independent.

4.1 Exact likelihood function

The joint density of the number of defaults and average recovery rate (Dt,Rt)
are calculated by integrating out the latent variable Xt for each t as

f(dt, rt) =

∫
f(rt | dt, xt)f(dt | xt)fN(xt)dxt, (9)

where the conditional densities f(dt | xt) and f(rt | dt, xt) are derived as
follows.

Given Xt = xt , all firms in a homogenous portfolio have the same conditional
default probability Pr[Ij(t) = 1 | Xt = xt] = Λ(xt) evaluated in (7). Thus,

the conditional distribution of Dt =
∑Jt

j=1 Ij(t) is binomial

f(dt | xt) = Pr[Dt = dt | Xt = xt] =

(
Jt

dt

)
[Λ(xt)]

dt [1−Λ(xt)]
Jt−dt . (10)

Often it is well approximated by the normal distribution N(µt,σ
2
t) with mean

µt = JtΛ(xt) and variance σ2t = JtΛ(xt)(1−Λ(xt)).



4 Likelihood function C192

Conditional on Xt = xt and Dt = dt , individual recoveries R1(t), . . . ,Rdt(t)
are independent and fromN(µr,σ

2
r) with µr = µ+σ

√
ωxt and σr = σ

√
1−ω .

Thus the average Rt is from N(µR,σ
2
R) with µR = µr and σ2R = σ

2
r/dt , that is,

f(rt | dt, xt) =
1√
2πσR

exp

(
−
(rt − µR)

2

2σ2R

)
. (11)

If recovery distribution is different from normal, then the average Rt can still
be approximated by a normal distribution if dt is large (and variance is finite).
Define the data vectors D = (D1, . . . ,DT) and R = (R1, . . . ,RT), then the
joint likelihood function for data D and R is

`D,R(θ) =

T∏
t=1

f(dt, rt). (12)

This joint likelihood function could estimate parameters θ by mle maximizing
this likelihood. However, the likelihood involves numerical integration with
respect to the latent variables X. It is difficult to accurately compute these
integrals, especially if the likelihood is used within numerical maximization
procedures. A straightforward and problem-free alternative is to take the
Bayesian approach and treat X in the same way as other parameters, and
formulate the problem in terms of the likelihood conditional on γ = (θ,X).
Then the required conditional likelihood is easily calculated as

`D,R(γ) =

T∏
t=1

f(dt | xt,θ)f(rt | dt, xt,θ), (13)

avoiding integration with respect to X. Estimation based on this likelihood is
discussed in detail in Section 5.

4.2 Approximate likelihood and closed form
Maximum Likelihood Estimation

Assuming a large number of firms in the portfolio, some approximation
is justified to find mle for the likelihood (12). We adopt an approach
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from Düllmann and Trapp [2], estimating the default process parameters
θD = (ρ,p) and systematic factor X first, and then fitting the recovery
parameters θR = (µ,σ,ω).

Given Xt, the conditional default probability Λt = Λ(Xt) is a monotonic
function of Xt; see (7). The density of Xt is the standard normal, thus the
change of probability measure gives the density for Λt at Λt = λt :

f(λt | θD) =
1√
2π

exp

(
−
x2t
2

) ∣∣∣∣dxtdλt

∣∣∣∣ , (14)

where xt is the function of λt, the inverse of (7),

xt =
(
Φ−1(p) −

√
1− ρΦ−1(λt)

)
/
√
ρ. (15)

For year t we observe the default rate Ψt that for Jt → ∞ approaches Λt.
Therefore, the likelihood for observed default rates ψ = (ψ1, . . . ,ψT) is

`D(θD) =

T∏
t=1

f(λt = ψt | θD). (16)

Maximizing (16) gives the following mle for ρ and p:

ρ̂ =
σ2δ

1+ σ2δ
, p̂ = Φ

(
δ√
1+ σ2δ

)
, (17)

where δ =
∑T

t=1 δt/T , σ2δ =
∑T

t=1(δt−δ)
2/T and δt = Φ

−1(ψt). The factor Xt
is then estimated using (15) with default parameters (p, ρ) replaced by mle
as

x̂t =
(
Φ−1(p̂) −

√
1− ρ̂δt

)
/
√
ρ̂ . (18)

Given Xt and Dt, the average recovery rate Rt is from N(µR,σ
2
R) with mean

µR = µ+ σ
√
ωXt and variance σ2R = σ

2(1−ω)/dt . Thus the likelihood for
T observations of the average recovery rate r = (r1, . . . , rT) is

`R(θR, x) =

T∏
t=1

√
dt

2πσ2(1−ω)
exp

(
−
dt
(
rt − µ− σ

√
ωxt

)2
2σ2(1−ω)

)
. (19)
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Düllmann and Trapp [2] estimate θR by mle via maximization of (19) with
respect to θR, where xt is replaced with x̂t. Due to numerical difficulties
with the maximization, they estimated σ by the historical volatility σ̂h
of the recovery rate rt. However, re-parameterizing with σ1 = σ

√
ω and

σ2 = σ
√
1−ω , we derive the following closed form solutions for the mle

of (µ,σ,ω):

σ̂1 =
(
∑

t dtrtXt) (
∑

t dt) − (
∑

t dtrt)(
∑

t dtXt)

(
∑

t dtX
2
t) (

∑
t dt) − (

∑
t dtXt)

2
, (20)

µ̂ =
(
∑

t dtrtXt) − (
∑

t dtX
2
t)σ̂1∑

t dtXt
, σ̂2 =

√
1

T

∑
t

dt(rt − µ̂− σ̂1Xt)2, (21)

ω̂ =
σ̂21

σ̂21 + σ̂
2
2

, σ̂ =
√
σ̂21 + σ̂

2
2. (22)

Note that numerical instabilities in the numerical maximization procedure
appear because the variance of the average recoveries goes to zero for large
number of defaults causing flatness of the likelihood. This problem would
not appear if we fit individual recoveries; unfortunately data for individual
recoveries are not available.

5 Bayesian inference and Markov chain

Monte Carlo

The parameters θ are unknown and it is important to account for this
uncertainty when the capital is estimated. A standard frequentist approach to
estimate this uncertainty is based on limiting results of normally distributed
mle for large datasets. We take the Bayesian approach because the dataset is
small and the parameter uncertainty distribution is very different from normal.
From a Bayesian perspective, both the parameters θ and the latent factor X
are random variables. Given a prior density π(γ) and a data likelihood
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π(y | γ) = `Y(γ), where γ = (θ,X) and Y = (D,R) is the data vector, the
density of γ conditional on Y = y (posterior density) is determined by Bayes
theorem as

π(γ | y) ∝ π(y | γ)π(γ). (23)

The posterior is then be used for predictive inference and analysis of the
uncertainties. There are many useful texts on Bayesian inference [10, e.g.], and
there are many recent examples in operational risk and insurance [14, 8, 7].

The explicit evaluation of posterior (23) is often difficult and one can use the
mcmc method to sample from the posterior. In particular, mcmc allows to get
samples of θ and X from the joint posterior π(θ,X | y). Then taking samples
of θ marginally, we get the posterior for model parameters π(θ | y); that is,
effectively integrating out the latent factor X. Similarly, taking samples of X
marginally, we get the posterior for systematic factor π(Xt | y). The posterior
mean is a commonly used point estimate. We adopt the component-wise
Metropolis–Hastings algorithm for sampling from the posterior π(γ | y),
following an established procedure [15, 8]. Other mcmc methods such as the
univariate slice sampler [7] can also be used. For numerical efficiency, we work
with parameter Φ−1(p). Also, we assume a uniform prior for all parameters
and the standard normal distribution as the prior for X1, . . . ,XT . The only
subjective judgement we bring to the prior is the lower and upper bounds of
the parameter values

Φ−1(p) ∈ (−10, 10), ρ ∈ (0, 1), µ ∈ (0, 1), σ ∈ (0.01, 1.0), ω ∈ (0, 1).

The parameter support range should be sufficiently large so that the posterior
is implied mainly by the observed data. We checked that an increase in
parameter bounds did not lead to any material difference in results.

The starting value of the chain for the kth component is set to a uniform
random number drawn independently from the support (ak,bk). In the single
component Metropolis–Hastings algorithm, we adopt a Gaussian density
(truncated below ak and above bk) for the proposal density. For each com-
ponent the variance parameter of the proposal was pre-tuned and adjusted
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so that the acceptance rate is close to 0.234 (the optimal acceptance rate
for d-dimensional target distributions with independent and identically dis-
tributed components [11]). The chain is run for 100, 000 posterior samples
(after 20, 000 “burn-in” samples).

6 Bayesian capital estimates

Bayesian methods are particularly convenient to quantify parameter uncer-
tainty and its impact on capital estimate [13]. Under the Bayesian approach,
the full predictive density (accounting for parameter uncertainty) of the next
time period loss LT+1, given data Y = y , is

fLT+1
(z | y) =

∫
fLT+1

(z | θ)π(θ | y)dθ , (24)

assuming that LT+1 and Y are independent, given θ. Its quantile,

QP
q = inf{z : Pr[LT+1 > z | Y] 6 1− q}, (25)

can be used as a risk measure for ec. The procedure for simulating LT+1
from (24) and calculating QP

q is simple:

1. draw a sample of θ from the posterior π(θ | y), for example, using
mcmc;

2. given θ, simulate loss L following steps 1–4 in Algorithm 1;

3. repeat steps 1–2 to obtain N samples of L;

4. estimate QP
q using samples of L in the standard way.

Another approach under a Bayesian framework to account for parameter
uncertainty is to consider a quantile Qq(θ) of the loss density fLT+1

(· | θ),

Qq(θ) = inf{z : Pr[LT+1 > z | θ] 6 1− q}. (26)
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Given that θ is distributed as π(θ | y), one can find the associated distribution
of Qq(θ), form a predictive interval to contain the true quantile value with
some probability and argue that the conservative estimate of the capital
accounting for parameter uncertainty should be based on the upper bound
of the interval. However, it might be difficult to justify the choice of the
confidence level for the interval. The procedure to obtain the posterior
distribution of quantile Qq(θ) is simple:

1. draw a sample of θ from the posterior π(θ | y), for example, using
mcmc;

2. compute Qq = Qq(θ) using, for example, Algorithm 1;

3. repeat steps 1–2 to obtain N samples of Qq(θ).

For the limiting case of a large number of borrowers, Step 2 is approximated
by a closed form formula.

The extra loading for ec due to parameter uncertainty is formally defined
as the difference between the quantile of the full predictive distribution
accounting for parameter uncertainty QP

0.999 and posterior mean of Q0.999(θ),
that is, QP

0.999 − E[Q0.999(θ)].

7 Numerical results using Moody’s data

Using historical data for the overall corporate default and recovery rates over
1982–2010 from Moody’s report [6], we fit the model using mcmc and mle.
Table 1 shows posterior summary and mle for the model parameters (the
coefficient of variation, cv, is defined as the ratio of standard deviation to
the mean). Significant kurtosis and positive skewness in most parameters
indicate that Gaussian approximation for parameter uncertainties is not
appropriate. Also, all mles are within one standard deviation from the
posterior mean. The posterior mean of the systematic factor Xt for year 2009
is about −2.27, which corresponds to approximately the 99% quantile level
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of the diversified portfolio. This maximum negative systematic factor for
year 2009 is a consequence of a disastrous year 2008 when the bankruptcy of
Lehman Brothers occurred. Comparison of mle and the posterior mean for
the latent factor X is shown in Figure 1.

The mcmc predictions on stressed pd, lgd and ec in comparison with the
corresponding mle are shown in Table 2. The mle for ec is 35% lower than
the posterior mean, 24% lower than the posterior median, and more than
50% lower than the 0.75 quantile of the posterior for ec. The uncertainty in
the posterior of ec is large, the cv is about 34.5%; also note a large differ-
ence between the 0.75 quantiles and the 0.25 quantiles of the ec posterior.
Underestimation of the ec by mle in comparison with posterior estimates
is significant due to large parameter uncertainty and large skewness in the
ec posterior. Also, we get the following results for the 0.999 quantile QP

0.999

of the full predictive loss density for portfolios with different number of bor-
rowers J: QP

0.999 = (0.1454, 0.1092, 0.1026, 0.1026) for J = (50, 500, 5000,∞)
respectively. The diversification effect when J increases is evident. In partic-
ular, QP

0.999 at J = 500 is about 25% lower than the case at J = 50 ; and for
J = 5000 is virtually the same as for the limiting case J = ∞ . Note that QP

0.999

at J = ∞ is about 50% larger than mle for the ec, and about 15% larger than
the posterior mean of Q∞

0.999(θ). The 15% impact of parameter uncertainty
on the ec indicates that the 1982–2010 dataset is long enough for a more or
less confident use of the model for capital quantification. Of course, these
results should be viewed as an illustration of the estimation methodology
rather than realistic estimates of the capital. The latter would require fitting
similar data for the actual loan portfolio in a bank.

8 Conclusion

The presented methodology allows joint estimation of the model parameters
and latent systematic risk factor in the well known lgd model via a Bayesian
approach and the mcmc method. This approach allows an easy calculation
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Table 1: mle and mcmc posterior statistics of the model parameters.
item mle mode mean stdev skewness kurtosis cv
p 0.0167 0.0177 0.0179 0.0028 0.812 4.62 0.154
ρ 0.0635 0.141 0.0815 0.024 1.01 4.35 0.286
µ 0.411 0.439 0.414 0.022 0.309 3.19 0.055
ω 0.0192 0.0717 0.031 0.016 1.24 5.39 0.51
σ 0.499 0.449 0.502 0.070 0.588 3.63 0.140
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Figure 1: mle (dots) and posterior mean (solid line) of systematic factor Xt.
Error bars correspond to posterior standard deviation of Xt.

Table 2: mle and mcmc posterior statistics for pd, lgd and ec.
item mle mean stdev 0.25Q 0.5Q 0.75Q cv
pd 0.0819 0.103 0.029 0.0825 0.0968 0.116 0.288
lgd 0.803 0.847 0.0562 0.808 0.841 0.880 0.066
ec 0.0657 0.0888 0.031 0.0672 0.0814 0.101 0.345
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of the full predictive loss density fLT+1
(· | y) accounting for parameter uncer-

tainty. Then the economic capital can be based on the high quantile of this
distribution. For realistic estimates of economic capital, one should fit the
model using dataset of defaults and recoveries for the actual loan portfolios
in a bank. In this article, for illustration, we fitted the model to Moody’s
data for corporate bonds. The Moody’s datasets of the annual defaults and
recovery rates are small. Thus the parameter uncertainty is large and the
posterior is very different from the normal distribution indicating that the
Gaussian approximation for parameter uncertainties (typically used under
the frequentist maximum likelihood approach assuming a large sample limit)
is not appropriate. For simplicity, we assumed a homogeneous portfolio. The
approach can be extended to deal with non-homogeneous portfolios, more
than one latent factor, and mean reversion in the systematic factor. It should
not be difficult to incorporate macroeconomic factors as done by Rösch and
Scheule [12].
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