
ANZIAM J. 53 (EMAC2011) pp.C127–C141, 2012 C127

Free convection in a triangular enclosure with
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Abstract

Unsteady natural convection inside a triangular cavity is stud-
ied. The cavity is filled with a saturated porous medium has a non-
isothermal left inclined wall while the bottom surface is isothermally
heated and the right inclined surface is isothermally cooled. Internal
heat generation is also considered, which is dependent on the fluid
temperature. The governing equations are solved numerically by the
finite volume method. The Prandtl number of the fluid is chosen to
be 0.7 (air) whereas the aspect ratio and the Rayleigh number are 0.5
and 105, respectively. The effect of heat generation on the fluid flow
and heat transfer is presented in terms of streamlines and isotherms.
The rate of heat transfer through the three surfaces of the enclosure is
also presented.
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1 Introduction

The characteristics of heat and fluid flow for a configuration of isothermal
vertical walls, maintained at different temperatures and with adiabatic hori-
zontal walls, are well understood [1, 2]. Less work has been carried out for
more complex thermal boundary conditions, such as an imposed thermal
gradient that is neither purely horizontal nor purely vertical. Shiralkar and
Tien [3] numerically investigated the natural convection in an enclosure with
temperature gradients imposed in both the horizontal and vertical directions
simultaneously. A number of studies related to simultaneously heating and
cooling adjacent walls of a square/rectangular enclosure are available [4, 5, 6].
Velusamy et al. [7] investigated the steady two dimensional natural convection
flow in a rectangular enclosure with a linearly varying surface temperature
on the left vertical wall, cooled right vertical and top walls and a uniformly
heated bottom wall. Hossain and Wilson [8] conducted similar work.

In recent decades, flow in a confined porous medium has received considerable
attention from researchers working with various experimental, theoretical
as well as numerical methodologies. The main application of study in this
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area is developing technology and industry, such as the prevention of sub-oil
water pollution, storage of nuclear waste and geothermal energy systems
(extensively reviewed by Cheng [10]).

The fluid flow and heat transfer inside a triangular enclosure has been recently
considered by many researchers because of its engineering applications in
attic shaped buildings, electronic devices, solar collectors and so on. Saha and
Khan [11] extensively reviewed natural convection in triangular enclosures.
Basak et al. [9] investigated natural convection inside a triangular enclosure
with linear heating/cooling on the inclined surfaces. Natural convection
in an attic space filled with porous media has also been conducted by a
number of researchers [12, 13, 14, 15]. In this study, we consider a triangular
enclosure filled with porous media and heat generating fluid with non-uniform
temperature conditions on one of the sloping walls. A detailed development
of the present investigation is given in the subsequent sections.

2 Mathematical formulation

Under consideration is a triangular cavity of height H, half length of the
base l, in a saturated porous medium containing a Newtonian fluid with
Prandtl number Pr = 0.7 which is initially at rest with a temperature Tc (see
Figure 1). At time t = 0 , a non-isothermal temperature condition is applied
on the left inclined wall where the temperature reduces linearly from bottom
to top. The bottom surface is uniformly heated at Th and the top major
portion of the right inclined wall is cold at Tc. The boundary condition at the
lower portion of the right inclined wall is explained by the base of the cavity
being on a reactor and a small gap at the bottom of the right inclined wall of
length s1 = s/10 (s is the total arc length of the right inclined surface) filled
with a sodium deposit. The temperature within the gap is expected to vary
linearly from Th to Tc. The effect of temperature dependent heat generation
in the flow region is also taken into consideration. The volumetric rate of
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Figure 1: Schematic of the geometry and the coordinate system.

heat generation, Q (W/m3), is assumed to be

Q =

{
Q0(T − Tc), T > Tc ,

0 , T 6 Tc ,
(1)

where Q0 is the heat generation constant. The above relation, as explained by
Saha et al. [16], is valid as an approximation of the state of some exothermic
process, which means that heat flows from the surface to the enclosure.
We further assume unsteady laminar flow of a viscous incompressible fluid
having constant properties. The effect of buoyancy is included through the
well-known Boussinesq approximation. Under the above assumptions, the
conservation equations for mass, momentum and energy in a two dimensional
Cartesian coordinate system are
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= 0 , (2)
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where u and v are the fluid velocity components in the x and y-direction,
respectively, t is the time, T is the fluid temperature, p is the fluid pressure,
β is the volumetric thermal expansion coefficient, K is the permeability of the
porous medium, and ρ, α and Cp are, respectively the density of the fluid, the
thermal diffusivity and the specific heat at constant pressure. In the present
investigation, porous medium inertia effects are neglected in the momentum
equations, and the effects of viscous dissipation are neglected from the energy
equation. In Equations (3) and (4), K is the measure of the permeability of
the porous medium (a packed bed of spheres) [8], defined by

ε+3d2

180 (1− ε+)
2

, (6)

where d is the diameter of the solid sphere, and ε+ is known as the porosity
of the media, defined by

ε+ =
Vf

Vc
. (7)

Here Vf is the volume of the fluid and Vc is the control volume. The following
dimensionless variables are constructed:

X =
x

H
, y =

y

H
, τ =

t

H/U0
, P =

p

ρU0
,

U =
u

U0
, V =

v

U0
, θ =

T − Tc
Th − Tc

,

(8)

where U0 = ν/H is the reference velocity. Introducing the above dimensionless
dependent and independent variables in the governing Equations (3) and (4),
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the following equations are obtained

∂U

∂X
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= 0 , (9)
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where Rayleigh number

Ra =
gβ(TH − TC)H

3

κν
, Pr =

ν

κ
, γ =

H2

K
and λ =

Q0H
2

ρνCp
. (13)

The dimensionless initial and boundary conditions are:

• all boundaries are rigid and non-slip;

• at τ 6 0 , U = V = θ = 0 ;

• on the bottom surface, θ = 1 ;

• on the left inclined surface, θ = 1− s ;

• upper portion of the right inclined surface, θ = 0 ;

• lower portion of the right inclined wall, θ = 1− s/s1 .

Using the numerically obtained values of the temperature function we obtain
the rate of heat flux from each of the walls. The non-dimensional heat flux
from any surface is −∂T/∂n, where n is the direction normal to the wall. For
example, the non-dimensional heat transfer rate, Nu, per unit length in the
depth-wise direction for the left vertical surface is

Nu = −

∫ 1
0

(
∂T

∂X

)
X=0

dY . (14)



2 Mathematical formulation C133

Figure 2: Steady state values of isotherms (left) and velocity field with vector
arrow (right): (a–b) λ = 0 , (c–d) λ = 10 , (e–f) λ = 20 , (g–h) λ = 30 ,
(i–j) λ = 40 with parameters Ra = 105, Pr = 0.7 , γ = 10.0 .
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3 Numerical procedure

Two dimensional numerical simulations were carried out to solve laminar
natural convection in a triangular enclosure. For this purpose, an isosce-
les triangular domain is considered, and a Cartesian coordinate system is
adopted with the origin located at the centre of the base, the x-axis pointing
horizontally, and the y-axis pointing vertically. The initial and boundary
conditions for the numerical simulations are also specified. That is, the air in
the enclosure is initially quiescent and isothermal with a uniform temperature
of θ = 0 . At the time τ = 0 , the left inclined surface is linearly cooled. On
the right inclined wall, the bottom gap is linearly cooled and the top portion
is uniformly cooled, and the base of the enclosure is uniformly heated. All
three surfaces of the enclosure are assumed to be rigid and non-slip.

The governing equations (9)–(12), along with the specified initial and boundary
conditions are solved numerically. The finite volume scheme was chosen to
discretize the governing equations, with the quick scheme approximating the
advection term. The diffusion terms are discretized using central differencing
with second order accuracy. A second order implicit time marching scheme was
used for the unsteady term. A triangular grid with 8143 nodes was constructed
over the domain. By halving the grid size, a detailed grid sensitivity test was
carried out to ensure the accuracy of the numerical results. The maximum
variation of temperature at a given point inside the enclosure for two grid
sizes was observed to be less than 2%. For brevity, the test results of grid
dependency are not presented here.

4 Results and discussion

Numerical results for natural convection heat transfer for a fluid with internal
heat generation in a triangular enclosure, filled with a saturated porous
medium with uniform porosity, are described. The left inclined wall is non-
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uniformly cooled and the right inclined and the bottom base are uniformly
cooled and heated respectively.

We plot the isotherms and contours of the stream function in Figure 2 for
different values of the heat generation parameter λ, with Ra = 105, Pr = 0.7
and γ = 10.0 . Figure 2 represents the isotherms and streamlines for pure
fluid in the absence of internal heat generation (λ = 0). Since the bottom
surface is uniformly heated, a heated boundary layer develops adjacent to
the bottom surface. Due to the buoyancy effect, the hot fluid inside the
boundary layer moves upward from the bottom left tip. The non-uniform
heating effect of the left inclined surface causes the hot fluid to move upward
and to disperse into the core of the enclosure. On the other hand, the cold
fluid near the right slopping wall moves downwards through the cold inclined
boundary layer. In the corresponding streamlines, a large convecting cell
occupies the whole enclosure with clockwise circulation. For increasing heat
generation parameter, λ, (see Figure 2) the isotherms cluster closer to the
right inclined cold surface of the enclosure. The gradient of temperature also
appears to increase in the core section of the enclosure. As λ increases, the
flow becomes stronger and a secondary vortex appears near the left inclined
wall. This secondary vortex becomes larger as the heat generation parameter
increases. It is expected that the secondary vortex will dominant the flow if
the heat generation parameter increases further.

Figures 3(a)–(c) plot the total heat transfer along three surfaces of the
enclosure for values of the permeability, 0.1 6 γ 6 100 , for Pr = 0.7 and
Ra = 105. These figures show that, as the value of the permeability increases,
the heat transfer from the bottom surface increases. For the linearly varying
temperature on the left surface, the heat flux is lower near the bottom and
higher near the mid portion of the surface from where hot fluids discharge
into the core of the enclosure. However, the heat transfer is lowest near the
top end where two surfaces meet with the same temperature. Heat transfer
through the right surface shows that an increase in permeability accelerates
heat transfer. However, the permeability has almost no effect on heat transfer
through the portion where the temperature is linearly distributed.
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Figure 3: Rate of heat transfer from
the surfaces for different values of γ
with Ra = 105, Pr = 0.7, λ = 0.0
(a) bottom surface, (b) left surface
and (c) right surface.
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We show the time series of average heat transfer through three surfaces of
the enclosure for different values of heat generation parameter, λ, in Figure 4.
Figure 4(a) shows the average heat transfer through the uniformly heated
bottom surface. Initially, the heat transfer rate is very high for all values of λ
due to conduction. When the convection starts to dominate the heat transfer,
we see undershoot followed by some oscillations. As the heat generation
parameter increases, the heat transfer through this surface decreases which,
as discussed before, is expected. The time evolution of average heat transfer
on the left inclined surface, which is linearly heated, is shown in Figure 4(b).
A large variation in heat transfer is seen for increasing values of λ when the
convection starts to dominant in the time period 0.02 < τ < 0.04 . After that,
the heat transfer reduces slightly and enters a steady state. Figure 4(c) shows
the average heat transfer on the cold right inclined surface. There is a large
variation in heat transfer during the steady state period for increasing values
of the heat generation parameter.

5 Conclusion

We studied the effects of internal heat generation and porosity of the medium
on the natural convection laminar flow and heat transfer in a triangular
enclosure where one of the inclined surfaces is non-isothermal. We used a
finite volume solution technique and applied the Boussinesq approximation
to treat buoyancy effects. The studies were carried out for a fluid having
a Prandtl number of 0.7 and a Rayleigh number of 105. Increasing heat
generation in the fluid reduces the thermal gradients near the heated bottom
surface of the enclosure. The strength of the dominant vortex induced by
buoyancy is reduced due to increasing internal heat generation, and a double
vortex structure develops. Increasing the permeability of the medium for
a fixed heat generation parameter value also increases heat transfer at the
surfaces.
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Figure 4: Time series of average
heat transfer from the surfaces for
different values of λ with Ra = 105,
Pr = 0.7 , γ = 0.0 (a) bottom sur-
face, (b) left surface and (c) right
surface.
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