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Stability and discretisation in delayed and
anticipatory systems of applied mechanics

P. B. Béda1

(Received 9 January 2012; revised 8 June 2012)

Abstract

In applied mechanics several articles concentrated on the compari-
son of delayed and non-delayed approaches of controlled machines. We
study both continuous and discrete time systems using both numeric
and analytic methods. The principal points of interest in the following
work are how continuous time systems differ from a representation
in some discrete time system in both stability and robustness, and
how the discretisation of a continuous time subsystem influences the
stability properties of the coupled system.
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1 Introduction

The stability of controlled mechanical systems is important. In numerous
problems of mechanical engineering a machine is controlled by a digital device
to perform some task. Such a system has two essentially different parts. One
is the machine, in the sense of mechanical engineering. It is usually described
as a continuous time system by using one of the traditional methods of applied
mechanics. The other subsystem is the discrete controller. Generally we have
a complex nonlinear system consisting of a continuous time and a discrete
time subsystems. Instabilities may arise from either the continuous or the
time discrete parts. For example, in balancing, the unstable continuous time
system should be stabilised by the digital control. An obvious problem in such
systems is the sampling delay effect. When it is neglected an anticipatory
model is obtained. The properties of this model may or may not be different
from the original one.

Previously [1] I derived the equation of motion for a simple controlled inverted
pendulum with length l and mass m (see Figure 1). The pendulum was
attached to a cart of mass M with a hinge and its stability was achieved
by applying a force F to the cart. Such a balancing problem is widely
studied [2, 6, 7, 8, 9] because it is a simple way to study how to keep a system
in the vicinity of an unstable equilibrium position.
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Figure 1: Inverted pendulum.

By using a Lagrangian formalism the equation of motion is
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2
mlϑ̇2 sin ϑ = Q(t), (2)

where the two generalised coordinates are the position x of the cart and the
angular position ϑ of the pendulum measured from the upwards vertical. On
the right hand side of (2) the generalised force Q is equal to the control force

Q(t) ≡ F(t) = c1ϑ̇ (t− τ) + c0ϑ (t− τ) . (3)

In (3) the output of the controller is delayed expressing that in most cases
there is a time delay τ between the measurement or sampling and the action
of the controller.

Beda [1] studied the stability of the continuous time system with numerical
analysis. Now, analytic methods are used. Our aim is to get the exact location
of stability domains of the discrete time systems in the form of a stability
chart in the plane of the forcing parameters.
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2 Discrete time systems

Two possible methods were described in previous work [1]. Firstly, we may
express ẍ from (2) and substitute into (1) so that

ϑ̈ = −
3 sin ϑ cos ϑ

4− 3 cos2 ϑ
ϑ̇2 +

6g sin ϑ

(4− 3 cos2 ϑ) l
−

cos ϑ

(4− 3 cos2 ϑ)ml
F(t), (4)

F(t) = c1ϑ̇ (t− τ) + c0ϑ (t− τ) . (5)

The other possibility is to keep the two generalised coordinates and force F,
an unknown function of the form (3), and then

ϑ̈ =
3lẋ2 sin ϑ cos ϑ− 6g sin ϑ

(−4+ 3 cos2 ϑ) l
+

6F cos ϑ

(−4+ 3 cos2 ϑ)ml
,

ẍ =
3g sin ϑ cos ϑ− 2lẋ2 sin ϑ

(−4+ 3 cos2 ϑ)
−

4F

(−4+ 3 cos2 ϑ)m
, (6)

F(t) = c1ϑ̇ (t− τ) + c0ϑ (t− τ) .

A detailed derivation of the continuous time dynamical systems (4), (5)
and (6) was performed by Beda [1] and it was followed by a linear stability
investigation of the upright position. Then the behaviour of the systems with
delayed and non-delayed control is compared using numerical analysis, which
requires discretisation.

When delay is omitted in the control law (5) (τ = 0) an incursive feed-in-time
system is obtained [3]:

F(t) = c1ϑ̇(t) + c0ϑ(t),

which is more obvious for a discrete time t ∈ {t0, t1, . . . , ti, . . .} system

F (ti) = c1ϑ̇ (ti) + c0ϑ (ti) , (7)
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while any nonzero delay should be interpreted as some recursive form. Assume
for the sake of simplicity that

ti = t0 + i∆t , where i = 1, 2, . . . ,

and τ = ∆t , where ∆t is a small positive time step. Then (5) produces the
recursion

F (ti) = c1ϑ̇ (ti−1) + c0ϑ (ti−1) .

When numerical simulation is needed, we should form a set of difference
equations instead of (5), (4) and (6). Let us introduce new variables:

y1 = ϑ , y2 = ϑ̇ , y3 = x , y4 = ẋ , y5 = F ,

and simplify the notation,

yk(i) = yk (ti) , k = 1, 2, . . . , 5 .

Then in the feed-in-time (τ = 0) case from (4) and (7)

y1 (i+ 1) = y1(i) + ∆ty2(i),

y2 (i+ 1) = y2(i) +

(
−
3 siny1(i) cosy1(i)

4− 3 cos2 y1(i)
(y2(i))

2
+

6g siny1(i)

(4− 3 cos2 y1(i)) l

−
6 cosy1(i)

(4− 3 cos2 y1(i))ml
y5(i)

)
∆t , (8)

y5(i+ 1) = c1y2 (i+ 1) + c0y1 (i+ 1) ,

is obtained. Or, more simply,

y1 (i+ 1) = y1(i) + ∆ty2(i), (9)

y2 (i+ 1) = y2(i) +

(
−
3 siny1(i) cosy1(i)

4− 3 cos2 y1(i)
(y2(i))

2
+
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−
6c1 cosy1(i)

(4− 3 cos2 y1(i))ml
y2(i) −

6c0 cosy1(i)

(4− 3 cos2 y1(i))ml
y1(i)

)
∆t .
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From (6) the recursive discrete dynamical system reads

y1 (i+ 1) = y1(i) + ∆ty2(i),

y2 (i+ 1) = y2(i) +

(
3y24(i)l siny1(i) cosy1(i) − 6g siny1(i)

(−4+ 3 cos2 y1(i)) l

+
6 cosy1(i)y5(i)

(−4+ 3 cos2 y1(i))ml

)
∆t ,

y3 (i+ 1) = y3(i) + ∆ty4(i),

y4 (i+ 1) = y4(i) +

(
3g siny1(i) cosy1(i) − 2y

2
4(i)l siny1(i)

(−4+ 3 cos2 y1(i))
(10)

−
4y5(i)

(−4+ 3 cos2 y1(i))m

)
∆t ,

y5 (i+ 1) = c1y2(i) + c0y1(i).

Previously [1] the stability of the equilibrum position θ = 0 was investigated
using linear approximations of (4) and (5). Then the discrete time systems
were studied using numerical simulations. Now the mapping obtained by
discretisation will be studied.

3 Stability of discretised systems

The linear stability of a mapping can generally be investigated by studying
the eigenvalues λi of its monodromy operator [4, 5]. For the anticipatory case,
from the linearisation of the right-hand-side of (9),

y1 (i+ 1) = y1(i) + ∆ty2(i),

y2 (i+ 1) = y2(i) +

(
6gy1(i)

l
−
6c1

ml
y2(i) −

6c0

ml
y1(i)

)
∆t .

The monodromy operator reads

A =

[
1 ∆t

6∆t g/l− 6c0∆t/ml 1− 6c1∆t/ml

]
.



3 Stability of discretised systems C346

Figure 2: Stability boundary in the plane of complex eigenvalues.

Its characteristic equation is

λ2 + 2
(−ml+ 3c1∆t)

ml
λ−

6 (∆t)
2
gm− 6 (∆t)

2
c0 −ml+ 6c1 (∆t)

ml
= 0 .

The solutions are eigenvalues

λ1,2 = 1− 3c̃1∆t±
√

(3c̃1∆t)
2
+ 6 (∆t)

2 (α2 − c̃0) (11)

where
c̃1 =

c1

ml
, c̃0 =

c0

ml
and α2 =

g

l
.

The stability condition is |λ| < 1 for all solutions of (11).

In the complex plane of eigenvalues (see Figure 2) the stable region is in the
unit circle and loss of stability happens when one of the eigenvalues leaves
the unit circle. The regions of three possible types of instabilities, the flip,
saddle-node and Hopf bifurcations, are also shown in Figure 2. For ∆t 6= 0
this result is obviously the same as that derived by Beda [1] for the continuous
time case.
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In discrete time systems with time step delay τ = ∆t the stability analysis is
much simpler than using the theorem cited by Beda [1]. For such a recursive
system obtained from (10) the monodromy operator is

B =


1 ∆t 0 0 0

6∆t g/l 1 0 0 −6∆t/ml
0 0 1 ∆t 0

−3∆t g/l 0 0 1 4∆t/m

c0 c1 0 0 0

 .

Its characteristic equation is

det (B − λI) = 0 , (12)

where I denotes identity operator as usual. Introducing ε = −1+ λ , (12) is
rewritten as

det


−ε ∆t 0 0 0

6∆t g/l −ε 0 0 −6∆t/ml
0 0 −ε ∆t 0

−3∆t g/l 0 0 −ε 4∆t/m

c0 c1 0 0 −ε− 1

 = 0 ,

and thus

ε5 + ε4 − 6
∆t (−c1 + ∆tgm) ε3

ml
− 6

(∆t)
2 (−c0 + gm) ε2

ml
= 0 .

Here, ε = 0 , that is, λ = 1 , is solution of multiplicity two, thus

(−1+ λ)
3
+ (−1+ λ)

2
− 6

∆t (−c1 + ∆tgm) (−1+ λ)

ml

− 6
(∆t)

2 (−c0 + gm)

ml
= 0

should be solved for λ to find the remaining roots.
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By fixing ∆t = 0.005 and α = 1 we have

(−1+λ)3+(−1+λ)2−6(0.005−c̃1)(−1+λ)+0.000150 c̃0−0.000150 = 0 . (13)

The solutions are plotted in Figures 3 and 4 as functions of ch0 = c0/ml and
ch1 = c1/ml .

By comparing Figures 3 and 4 we find that the results for eigenvalue λ1 are
visibly similar: in both cases they are larger then one at the origin and near
to the axis c̃ = 0 . We also observe that in the anticipatory case, λ1 decreases
“faster” for c̃1 > 0 . The main difference is in the form of the surfaces calculated
for the other eigenvalues, because in the recursive case we see a stability limit
for c̃1 > 0 .

To find the exact stability boundaries for (11) and (13) we substitute

λ = β±
√
1− β2 , 0 6 β 6 1 ,

into (11) and (13) and solve for c̃1 and c̃0 . Then the stability charts presented
in Figure 5 are obtained.

Here the main difference is that for the anticipatory system there is no upper
boundary for the stable region in both directions, while in the case of the
recursive system the stable region is bounded. In this sense stability properties
are weaker in the recursive case.

4 Summary

When a mechanical system is controlled by some digital device the finite time
step causes a decrease in the stable region of the control parameter plane. For
this reason we should be careful in modelling. In correct modelling we should
keep the control force separate in order to see the real nature of control. From
Equations (9) and (8) we see how incursion is hidden, when delay is omitted.
Then a hidden anticipatory effect may result in better stability properties and
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Figure 3: The eigenvalues at anticipatory case λi = λi(ch0, ch1).
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Figure 4: The eigenvalues at recursive case λi = λi(ch0, ch1).
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anticipatory recursive

Figure 5: Stability charts in (c̃1, c̃0) plane.

a larger stability region for the model. This may lead to unexpected unstable
behaviour of the real system.

As we have seen, stability investigation leads to the same results in both
continuous and discrete time systems for anticipatory models. The reason
is that at feed-in-time the behaviour of the system can be described by a
set of first order ordinary differential equations. When sampling delay is
taken into consideration we should use functional differential equations, which
introduces many complications. In our case a recursive discrete time system
was formed and the stability region was found by a simple analytic method.

The recursive system has a double critical eigenvalue. It shows that the
system is on a stability boundary, but the physical system is a free system in
coordinate x and this is the source of such an instability.



References C352

Acknowledgements This work was supported by the National Scientific
Research Funds of Hungary (OTKA contract number K81531)

References
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