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Equilibrium, stability and evolution of bubbles
in a finite melt volume
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Abstract

We consider a simple model of the simultaneous expansion and/or
contraction of multiple bubbles, initially having the same size, immersed
in a finite melt volume. The bubble growth is due to the presence of a
dissolved gas within the melt. The model has multiple equilibria, and
we examine the stability of each equilibrium state, via linear stability
analysis and numerical experiment. We show that in every case it is the
largest bubble size that is stable. Finally, we consider a generalisation
of the model which allows a demonstration of the process of Ostwald
ripening, where smaller bubbles contract while larger bubbles expand.
The model has application to a diverse range of phenomena, including
the head on a glass of beer, magma systems and the conversion of coal
into coke.
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1 Introduction

There are several instances in natural and man-made materials where the
existence of a large number of bubbles has significant effect on the behaviour
or performance of a system. Examples include magma systems, where the
formation and expansion of bubbles is directly responsible for explosive
ejection of material from the system [1]; the ‘head’ on a glass of beer, which
consists of a ‘wet’ foam containing large numbers of bubbles [2]; the formation
of coke from coal, where volatile gases in the softened coal promote the
growth of bubbles, which in turn have a significant effect upon the structural
properties of the coke [3]. In each of these cases, it is necessary to consider the
behaviour of a large number of bubbles, rather than a single, isolated bubble,
in order to understand the behaviour of the system. Some studies of multiple
bubble systems consider distributions of bubble sizes and their evolution
through time via population equations [4], whereas others consider all of the
bubbles to be the same, but arranged in a way that their interaction is taken
into account [5, 6]. We take the latter approach, in order to investigate the
existence of equilibrium states for a representative multiple bubble system,
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Figure 1: Schematic of a fluid-bubble mixture in a cylinder.

and then examine the stability of the equilibria. The aim is to use such a model
to identify key features of the different systems, by means of a particularly
simple model. Finally, we generalise the simple model to demonstrate a
feature of this type of system called Ostwald ripening [7].

2 Monomodal model

Consider a set of N bubbles, each locally having the same radius R(z) and
internal gas pressure pg, distributed uniformly throughout a fixed volume Vm
of viscous fluid. We find it convenient to consider the fluid-bubble mixture to
be contained within a circular cylinder of diameter d, closed at the bottom
but free to move at the top, as shown in Figure 1. The total volume of the
sample is

V =
πd2

4
h = Vm +

4

3
NπR3, (1)
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from which the height of the sample is obtained. Such a cylinder could be a
vertical conduit through rock for volcanic magma, the dilatometer column
used for assessing the properties of coking coal [3], or the head on a glass of
carbonated drink, such as beer. For simplicity, we consider the bubbles to
be locally positioned in a face centred cubic (fcc) arrangement, where the
side of the standard cube is of length S. Then, taking the approach of, for
example, Proussevich et al. [5], we obtain a set of equations for the growth of
the bubbles:

dR

dt
=

(pg − pf − 2γ/R)RS
3

4µ(S3 − 8R3)
, (2)

d

dt
(R3pg) =

6RgTR
2Dρ

SM
(C− Cs), (3)

(1− ε)
DC

Dt
= D

∂2C

∂z2
−
8πnDR2

S
(C− Cs), (4)

where µ is the melt viscosity, t is elapsed time, pf is the pressure of the fluid,
Rg is the universal gas constant, T is the absolute temperature, D is the
diffusion coefficient of the gas within the fluid, ρ is the fluid density, C is the
mass fraction of gas in the fluid bulk, Cs is the equilibrium concentration of
gas on the surface of the bubbles, M is the molecular weight of the gas, and
n is the number density of the bubbles. The first equation is a momentum
balance where inertial terms are neglected. The following two equations
consider that the growth or collapse of the bubbles is due to the presence
of absorbed (ideal) gas within the surrounding melt, being equations for
the conservation of gas within the bubbles and the melt, respectively. Gas
transport in the melt is via diffusion through the bulk of the melt, which is
the first term on the right of Equation (3), or transport into bubbles, given
by the second term. The second term is obtained by assuming that flux of
gas into the bubbles is (C− Cs)D/(2S), which depends on the half-spacing
between bubbles. This is a simplification of the actual diffusion of gas, but it
is practically reasonable. Note that, given the cylindrical volume, we consider
that the bubble radius, gas pressure and gas concentration in the melt are all
functions of the vertical position z and time t only. Moreover, we consider
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that gas escapes through the top surface of the sample, so that the flux of
gas at z = h is

D
∂C

∂z

∣∣∣∣
z=h

= hsCs(h). (5)

The equilibrium gas concentration on the bubble surface is determined by
Henry’s Law, which relates it to the bubble gas pressure,

Cs = (Khpg)
η, (6)

and we specifically consider the two cases η = 1 and η = 0.5 . According to
Proussevitch et al. [5], η = 0.5 is appropriate for water dissolved in a basaltic
melt, whereas η = 1 is appropriate for CO2 dissolved in water [8]. We define
the volume fraction of bubbles as

ε =
4
3
NπR3

Vm + 4
3
NπR3

. (7)

3 Equilibrium solutions

In the case where there is no gas loss from the surface of the melt, that is,
hs = 0 , there are equilibrium solutions where all bubbles are of the same
radius, R. In this case, the equilibrium is

pg = pf +
2γ

R
, (8)

C = Cs = (Khpg)
η. (9)

If the bubbles initially each have radius R0 and gas pressure pg0, then conser-
vation of gas in the system requires that any equilibrium solution needs to
satisfy

ρ CVm +N
4

3
πR3

pgM

RgT
= ρ C0Vm +N

4

3
πR30

pg0M

RgT
. (10)
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Combining (8), (9) and (10) gives the following fourth order polynomial for r
(η = 1) (

αω
1− ε0
ε0

+ r3
)
(δr+ 1) =

(
αω

1− ε0
ε0

+ 1

)
(δ+ 1)r (11)

where

r =
R

R0
, α =

ρRgT

pfM
, δ =

pfR0

2γ
, ω = pfKh ,

or gives the seventh order polynomial for r (η = 0.5)[
α
1− ε0
ε0

]2
ωδ(δr+ 1) = r

[
α
1− ε0
ε0

√
ωδ(δ+ 1) + (δ+ 1) − r2(δr+ 1)

]2
.

(12)

Both Equations (11) and (12) have the trivial solution r = 1 , as well as
one other positive real solution. In the case of η = 1 the other positive real
solution is only feasible if

δ >
α1−ε0

ε0
− r21 − r1

r31 + r
2
1 + r1

, (13)

where

r1 =
1− ε0
ε0

π

3
√
2− π

corresponds to the dimensionless bubble radius when all the bubbles are
touching in the fcc configuration, at which point ε = π

3
√
2

.

A similar, though more complicated, constraint applies to the second solution
in the η = 0.5 case. Note that the second solution, having r 6= 1 , can be
achieved because the total volume, V , of the system changes according to
Equation (1).

For illustrative purposes, we consider the examples of dissolved CO2 in water
at 298K (η = 1) and dissolved H2O in basaltic melt (η = 0.5). Table 1 shows
the appropriate parameters for these two cases.
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Table 1: Properties of the two example systems considered.

CO2 in water basaltic melt
η = 1 η = 0.5

Kh (Pa−1) 1.48× 10−8 5× 10−11
ρ (kg/m3) 1000 2600

γ (N/m) 0.3 0.36
T (K) 298 1273
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Figure 2: One of four graphs showing the regions of (δ, ε0) space in which
one or two equilibria exist for the data of Table 1 and the case η = 1.
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Figure 3: One of four graphs showing the regions of (δ, ε0) space in which
one or two equilibria exist for the data of Table 1 and the case η = 0.5 ,
pf = 10MPa.

Figurs 2–5 shows the different regions of (δ, ε0) space in which feasible
solutions exist for the two cases in Table 1. Also shown in each graph is the
boundary between regions where the second solution has r < 1 , at higher
voidages, and r > 1 at lower voidages. This is the locus along which r = 1 is
a double root of the equilibrium equation(s)

3δ+ 2 = αω
1− ε0
ε0

, (14)
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Figure 4: One of four graphs showing the regions of (δ, ε0) space in which
one or two equilibria exist for the data of Table 1 and the case η = 0.5 ,
pf = 1MPa.

for η = 1 and

3δ+ 2 = α
1− ε0
ε0

√
ωδ

2
√
δ+ 1

, (15)

for η = 0.5 .

The graphs show that the different forms of Henry’s Law lead to quite different
possibilities for equilibrium. In the η = 1 case (Figure 2), two solutions exist
for a wide range of situations, while a single solution (r = 1) exists for small
bubble sizes at low voidage. In the η = 0.5 case, results are shown for three
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Figure 5: One of four graphs showing the regions of (δ, ε0) space in which
one or two equilibria exist for the data of Table 1 and the case η = 0.5 ,
pf = 0.1013MPa.

different pressures, effectively representing the situation for different depths
of basaltic melt. Figure 3 represents the situation a few hundred metres down
into a melt. The region below the pink curve, where bubbles are unstable
and grow to bursting, is extremely small, indicating that bubbles at depth
are very stable. At a few tens of metres down (Figure 4), there is a moderate
sized region of the space where the bubbles are unstable, but at the surface
(Figure 5), the unstable region is very large, indicating the explosive potential
of bubbles near the surface.
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All of these solutions make the assumption that there is sufficient gas dissolved
in the melt for the equilibria to actually exist. For small bubbles, this
becomes unlikely because the required gas concentration increases as bubble
size decreases, as a consequence of Equations (8) and (9).

4 Stability and Ostwald ripening

Linear stability of each the equilibria was considered by using Equations (2)
and (3) along with (10), which holds at all times. Evaluation of the Jacobian
of the right hand side of the resulting pair of odes at the equilibrium points
shows that, in the region where only the r = 1 solution exists, it is always
unstable to small perturbations. This is likely to mean that bubbles in this
state grow until they touch and then will likely coalesce to form fewer, larger
bubbles. In the regions where two equilibria are possible, we find that the
solution with the smaller radius is always unstable, while the one with the
larger radius is always stable. This situation holds for both η = 1 and η = 0.5 .
Accordingly, the boundaries shown in Figures 2–5 also represent stability
boundaries. Similar results on existence and stability of bubble equilibria
were found by Ward et al. [8]. The stability we are considering here, given
the system of equations used, is equivalent to all of the bubbles in the system
being perturbed in the same way. In order to further investigate stability,
we consider the case where two equilibria exist, and examine what happens
when the smaller bubbles are perturbed, by numerical solution of (2) and (3).
Figure 6 shows the result in one particular example. In this case, the initial
equilibrium was perturbed by slightly changing the bubble radius from its
equilibrium, then adjusting the initial gas pressure so that the total gas in
the system is conserved. As a result, we see that the bubbles grow in size
until they reach a different equilibrium which is stable numerically. This
equilibrium is the other solution of Equation (12).

In order to relax the stability condition somewhat, we consider the equilibrium
fcc configuration of bubbles to consist of two populations, one being the
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Figure 6: Time evolution from an unstable state with bubbles of initial
radius, R0 = 50µm and ε0 = 0.25 . The simulation is for the case η = 0.5 ,
pf = 0.1013MPa.
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bubbles on the vertices of the unit cube, having radius R1 and internal
gas pressure pg1, and the other being the bubbles on the faces of the unit
cube, having radius R2 and internal gas pressure pg2. Then we generalise
Equations (2) and (3) to

dR1

dt
=

(pg1 − pf − 2γ/R1)R1S
3

4µ(S3 − (R1 + R2)3)
, (16)

dR2

dt
=

(pg2 − pf − 2γ/R2)R2S
3

4µ(S3 − (R1 + R2)3)
, (17)

d

dt
(R31pg1) =

6RgTR
2
1Dρ

SM
(C− Cs1), (18)

d

dt
(R32pg2) =

6RgTR
2
2Dρ

SM
(C− Cs2). (19)

These equations have the same equilibria and linear stability behaviour as
the previous ones. Note that for equilibrium, they need to have R1 = R2 .
Finally, we solve these equations numerically, with an initial condition being
an unstable equilibrium point, in the region where two equilibria exist, but
having the radius of one set of bubbles R1 perturbed slightly from equilibrium,
again perturbing pg1 in order to conserve the total mass of gas. The result is
shown in Figure 7, which shows that one set of bubbles shrink and eventually
collapse, while the other set of bubbles grow, eventually reaching a new
equilibrium solution. This, then, is a clear demonstration of the condition
known as Ostwald ripening, where larger bubbles tend to grow at the expense
of their smaller neighbours, which collapse. The reason in this case is that,
whenever there is a difference in bubble sizes, a concentration gradient is set
up between the bubbles, and gas will diffuse in the direction of the larger
bubble, because it has a lower gas concentration on its surface.
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Figure 7: Time evolution of a bimodal bubble distribution, showing a model
of Ostwald ripening.

5 Conclusions

The model for equilibrium and stability presented here could be argued to
be overly simplistic, especially given we assume all bubbles have the same
size and are arranged in a regular fashion. However, it has been shown in
population dynamics models of multiple bubbles that solutions tend towards
monomodal systems in the case when the fluid viscosity is low or extremely
high [4] and also that collections of monodisperse bubbles self-organise into
regular crystalline (fcc) arrangements [9, 10]. We emphasise that stability
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will be compromised in real systems by factors not considered here, especially
gravity (which leads to drainage of liquid from the foam). Moreover, we have
not considered processes that lead to the formation of bubbles (nucleation)
or their destruction (for example, by coalescence).
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