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Abstract

Markov chain theory has been used to model the likelihood of
payment to contractors based on historical owner payment practices.
An important assumption in this modelling of owner payment behaviour
is that the transition probability matrices are stationary. We study
this assumption: the null hypothesis postulated is that the transition
matrices are stationary; the alternate hypothesis is that they are
not. This article also explores the impact of this assumption on the
performance of the model. The outcomes of the model, in the form of
payment likelihood of an outstanding amount against its age, given by
both stationary and non-stationary approaches are compared. Tests
performed on two project data sets show that the null hypothesis
is rejected at the 5% level of significance. However, the payment
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probabilities estimated using non-stationary transition matrices are
shown to approach a steady state after a relatively short fluctuation.
These steady state values of payment probabilities are almost identical
to those estimated under a stationary assumption. Therefore, we
recommend users of the model adopt the stationary transition matrix
approach to avoid the extra mathematical complication caused by
non-stationarity. This article reinforces the validity of the existing
Markov chain formulation of owner payments and its assumption of
stationarity. The analysis presented, although based on case study
data, can be translated to any project, provided data in the right form
are available.
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1 Introduction

Markov chain theory is used in various applied fields and its modelling
power has been demonstrated. Applications of the theory are found in
engineering, chemistry, medicine, finance and other fields. In construction
project management, Markov chain theory is used to model construction
productivity [5] and owner payments [6]. The Markov chain formulation of
owner payments [6] allows contractors to estimate the likelihood of late and
incomplete payments in an uncertain payment environment. This formulation
can be readily combined with the classification of typical owner payment
behaviour [23, 24]. The probability that an outstanding amount will be paid
over time, or the probability that it may not be paid, feeds directly into the
contractor’s cash flow, cash planning, accounting and risk analysis practices.

The outcome of a Markov chain model depends on the probabilities within
the transition matrix, and on whether the transition matrix is time indepen-
dent (stationary) or time dependent (non-stationary). While a stationary
assumption allows the straightforward calculation of the long-run equilibrium
distribution of amounts in different states, changes in the transition probabili-
ties over time may be a concern [11]. The assumption of stationarity in some
established Markov chain models has been tested and rejected [8, 3, 25, e.g.].

In the Carmichael–Balatbat owner payment model [6], differences in claim
sizes and the time at which claims are submitted are not taken into account,
although it is suggested that they can be. Because claims and payments may
occur over a relatively long period (maybe several years), they are subject
to many external factors, such as project delays, the owner’s financial status
or administration procedures. The owner’s payment of different claims, for
example, between one submitted early in the project and one submitted
near project completion, could be quite different in terms of timing and
completeness. Hence, the transition probabilities near the project start may
be different to those in the middle, or near the project end. Also, the owner’s
response to claims differing in size and type may also not be consistent
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(for example, a large claim may take a longer time to be assessed before
being approved than a small claim). Consequently, the payment likelihood
estimated using a stationary transition matrix may be different to that given
by a non-stationary transition matrix.

This article examines the stationarity assumption in the Carmichael–Balatbat
formulation, and the long run behaviour if non-stationary transition matrices
are used. The article first summarises the established formulation of owner
payment histories and available tests for stationarity. The theoretical likeli-
hood ratio test is then specifically adapted to, and demonstrated on, actual
owner payment data. Payment probabilities at a certain time following claim
submission, obtained using a non-stationary approach, are then compared
with those obtained using a stationary approach. The analysis is presented
based on data from two projects, differing in size and type. Based on this
comparison, conclusions and recommendations to the targeted users of the
Carmichael–Balatbat formulation are given.

2 Background

2.1 Stationary testing of Markov chain transition
matrices

Theoretical procedures for testing the stationarity of transition matrices
are available. Of particular relevance to this article is the likelihood ratio
test for stationarity [1]. In this test, the maximum likelihood estimates
and their asymptotic distribution in a Markov chain of arbitrary order are
obtained. There is also the X2 test for homogeneity or fit [7, 16, e.g.], which
is asymptotically equivalent to the likelihood ratio test [22]. Modifications of
these two tests have been developed, for example, using Whittle’s formula,
X2 distribution and maximum likelihood methods to estimate and test the
parameters [4]; or using an extension of the Tsiasis model based on marginal
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distributions [20]. A method of stationarity testing by simple visual inspection
of plots of transition probabilities over time was suggested by Kallberg and
Saunders [14]. Barlett [2], Hoel [12] and Pardo [17], for example, developed
mathematics of the estimation of non-stationary transition probabilities.
Kiefer and Larson [15] and Weissbach, Tschiersch and Lawrenz [25] also
discussed the calculation of non-stationarity transition probabilities.

Among the available test procedures, the likelihood ratio test appears to be
used most commonly for verifying the stationarity assumption in applied
Markov chain models [21, 13, 3, 25, 26, e.g.]. Test results vary from accepting
to rejecting the hypothesis of stationarity, depending entirely on the data
upon which the tests are performed. Some works accept the stationarity
assumption [21, 13, e.g.]. Some works reject the stationarity assumption [3,
8, 26, 25, e.g.]. The purpose of this article’s analysis is similar to that of the
above listed articles, but applied to the owner payment formulation [6].

2.2 Probability transition matrix in the
Carmichael–Balatbat Markov chain formulation

The Carmichael–Balatbat Markov chain formulation of late and incomplete
payments uses a summary of outstanding money against time after claim
lodgement to calculate the transition probabilities between states. States
are defined as the period of time by which payment is overdue. There are
n transient states, k = 0, 1, 2, . . . ,n− 1 , and two absorbing states, namely
the ‘To be resolved’ and the ‘Paid’ states corresponding to k = n,n ′.

The transition probability, pjk, is the probability associated with the transition
of money from state j to state k. Let αjk be the amount in state k that is
transferred from state j between periods i and i + 1 (this can be obtained
directly from a summary of outstanding money against time after claim
lodgement), then

pjk =
αjk∑n ′

k=0 αjk
. (1)
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The (n+2)×(n+2) transition probability matrix P contains the elements pjk
where j,k = 0, 1, 2, . . . ,n,n ′ [6].

Since movements only occur from a state to its immediate next state, or to
state n ′, the matrix P is only populated with elements pjn ′ , pj,j+1 and pn−1,n,
j = 0, 1, 2, . . . ,n− 1. The matrix P is arranged as

P =

[
I O

R Q

]
, (2)

where I is a 2 × 2 identity matrix, O is a 2 × (n − 1) zero matrix, R is an
(n− 1)× 2 matrix and Q is an (n− 1)× (n− 1) matrix. Matrices I and O
always contain 1 and 0 elements, therefore, the following analysis only focuses
on the entries of the matrices R and Q.

The estimation of P in the above formulation is typically based on all project
claims. That is, P is populated after payment of every claim has been made,
or not made. An alternative to this is to estimate P at every claim entry in
the claim list, based on the accumulating claims history. In this case, the
entries of P at a time point τ reflect the ageing outstanding project money
up to τ. They also reflect the owner payment behaviour up to time point τ.
Another possible way to estimate the entries in the P matrix is by using the
summary of all claims made within a certain project phase. Then, there is
one matrix P for each phase of the project and τ is taken to represent the
phase number (for example, if the project has three phases then τ = 1, 2, 3).
The last two methods of estimating the transition matrices are considered
and tested in the next section.
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3 Adaptation of the likelihood ratio test to

the owner payment problem

3.1 Test procedure

The likelihood ratio test, first given by Anderson and Goodman [1] and later
demonstrated on real data [22], is adapted here to the owner payment case.
Two actual project data sets demonstrate the test procedure.

The null hypothesis and the alternate hypothesis are:

H0 : pjk(τ) = pjk (τ = 1, 2, . . . , s);

H1 : pjk(τ) is dependent on τ;

where j,k are transient or absorbing states, j,k = 0, 1, 2, . . . ,n,n ′, τ is a
time point between project start and project end, and s denotes project
completion.

Under the alternate hypothesis H1, the transition probabilities at time point τ,
pjk(τ), between periods i and i+ 1, estimated at time point τ, are

pjk(τ) =
αjk(τ)∑n ′

k=0 αjk(τ)
, (3)

where αjk(τ) is the amount in state k that is transferred from state j between
periods i and i+ 1, estimated at time point τ.

The likelihood function maximised under H0 is

L =

s∏
τ

n ′∏
j,k

p
αjk(τ)
jk . (4)

The likelihood function maximised under H1 is

L =

s∏
τ

n ′∏
j,k

pjk(τ)
αjk(τ). (5)
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Table 1: Payment profile—all claims; Example 3.2.
Total
claimed
amount
($K)

Outstanding
> 1 week
($K)

Outstanding
> 2 weeks
($K)

Outstanding
> 3 weeks
($K)

Outstanding
> 4 weeks
($K)

114, 563.8 114, 563.8 109, 873.2 98, 554.4 19, 344.8

Thus the likelihood ratio, denoted as λ, is

λ =

s∏
τ

n ′∏
j,k

(
p̂jk

p̂jk(τ)

)αjk(τ)

. (6)

The caret notation denotes a likelihood estimate. Anderson and Goodman [1]
and Cramer [7] showed that −2 log(λ) is distributed as X2 with (s− 1)(n+
2)(n+ 1) degrees of freedom when the null hypothesis is true (here n+ 2 is
the total number of transition states). Since the distribution of −2 log(λ)
is known, the probability of obtaining a value of −2 log(λ) or higher, if the
hypothesis were true, can be determined. This conditional probability can be
found using a table of the X2 distribution under (s− 1)(n+ 2)(n+ 1) degrees
of freedom.

3.2 Example: two lane, grade separated road

Project: construction of a 7 km two lane, grade separated road. A total of
41 progress claims were made over a total duration of 32 months. Under the
original modelling using a stationary assumption [6], the transition probabili-
ties are estimated based on a summary of total outstanding amounts for the
entire project against weeks following claim submission. That is, the summary
is made based on the full project data. Let n = 4 and the time interval be a
week. The payment profile summary is given in Table 1. There are six states
in total: states 0 to 3 corresponding to the amount owing beyond 0, 1, 2
and 3 weeks; state n ′ being the ‘Paid’ state; and state n being the ‘To be
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Table 2: Summary of outstanding claimed amounts in three project phases;
Example 3.2.

Project
phase τ

Total
claimed
amount
($K)

Outstanding
> 1 week
($K)

Outstanding
> 2 weeks
($K)

Outstanding
> 3 weeks
($K)

Outstanding
> 4 weeks
($K)

1 12, 089.9 12, 089.9 12, 089.9 12, 089.9 7, 416.0
2 40, 110.5 40, 110.5 40, 110.5 34, 724.3 5, 186.2
3 62, 363.4 62, 363.4 57, 672.8 51, 740.2 6, 742.6

resolved’ state; n = 4. Under the assumption of stationarity, the entries of
the matrices R and Q were obtained directly from Table 1 and are

R̂ = {r̂jk} =


0 0

0.041 0

0.103 0

0.804 0.196

 , Q̂ = {q̂jk} =


0 1 0 0

0 0 0.959 0

0 0 0 0.897
0 0 0 0

 .

Now allow the matrices R and Q to change with time throughout the project.
For demonstration purposes, let the states be observed at three time points
during the project: at the end of the first 11 months (phase 1), at the end of
the next 10 months (phase 2) and at the end of the last 11 months (phase 3).
That is, τ = 1, 2, 3. Table 2 summarises the outstanding amounts owing
to the contractor in each of the phases. The payment profiles in Table 2
are summarised using claims made within a phase rather than all claims
accumulated from the project beginning. The values of αjk(τ) for the three
phases are derived directly from the payment data in Table 2. The transition
probabilities between states from period i to i+ 1, estimated at time point τ,
pjk(τ), are calculated using Equation (3). The likelihood ratio λ is calculated
according to Equation (6),

λ =

s∏
τ

n ′∏
j,k

(
p̂jk

p̂jk(τ)

)αjk(τ)

=

3∏
τ

n ′∏
j,k

(
r̂jk

r̂jk(τ)
.
q̂jk

q̂jk(τ)

)αjk(τ)

. (7)
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Table 3: Summary of all claims; Example 3.3.
Total
claimed
amount
($K)

Outstanding
> 2 weeks
($K)

Outstanding
> 4 weeks
($K)

Outstanding
> 6 weeks
($K)

Outstanding
> 8 weeks
($K)

1, 888.9 1, 888.9 550.6 308.2 270.1

Considering only nonzero elements, λ = (1.595 × 10−5)106 and −2 log(λ) =
22.09 × 106. If the null hypothesis is true, the probability of observing a
value of −2 log(λ) under (s − 1)(n + 2)(n + 1) degrees of freedom must be
greater than 0.05 (for a one-sided test, 5% level of significance). Using a
X2 distribution table with 60 degrees of freedom, the probability of observing
the above value of −2 log(λ) is far smaller than 0.05. Thus there is strong
evidence against the null hypothesis H0.

3.3 Example: steel fabrication

Project: steel fabrication. Twelve claims of total value of approximately
$1.89M were submitted over a duration of 12 months. In this example an
alternative way of establishing the P matrix over time, namely calculating P
based on the to-date outstanding project money, is used. Let n = 4 and the
time interval be a fortnight. Then P is a 6× 6 matrix, R is a 4× 2 matrix and
Q is a 4× 4 matrix. Table 3 summarises the outstanding amounts against
fortnights after claim lodgement, done for all claims combined. Now, for
contrast, let the outstanding amounts be summarised each month during the
12 month project duration. At a certain month, the outstanding amounts are
the actual to-date outstanding money, accumulated from the project start
(Table 4). As anticipated, at τ = 12, the outstanding amounts are the same as
those in Table 3, that is the P matrix with this approach eventually becomes
the same as the P matrix obtained from Table 3. The likelihood ratio test
procedure is repeated as above. The value of λ is found to be 0.441 when
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Table 4: Summary by month of to-date outstanding money; Example 3.3.

At
month τ

Total
claimed
amount
($K)

Outstanding
> 2 weeks
($K)

Outstanding
> 4 weeks
($K)

Outstanding
> 6 weeks
($K)

Outstanding
> 8 weeks
($K)

1 89, 531 89, 531 89, 531 89, 531 89, 531
2 173, 329 173, 329 99, 710 99, 710 99, 710
3 421, 008 198, 096 124, 477 124, 477 124, 477
4 531, 654 308, 742 134, 641 134, 641 134, 641
5 1, 082, 009 344, 784 170, 683 170, 683 170, 683
6 1, 358, 504 407, 462 233, 361 233, 361 233, 361
7 1, 657, 696 440, 712 266, 611 266, 611 266, 611
8 1, 709, 917 492, 933 267, 075 267, 075 267, 075
9 1, 801, 566 492, 933 267, 075 267, 075 267, 075
10 1, 818, 082 509, 449 267, 075 267, 075 267, 075
11 1, 847, 810 509, 449 267, 075 267, 075 267, 075
12 1, 888, 942 550, 581 308, 207 270, 101 270, 101

the amounts are in thousands of dollars. Therefore −2 log(λ) = 1636.1. The
probability of observing a value of 1636.1 under 6× 5× 11 = 330 degrees of
freedom is smaller than 0.05, and therefore there is strong evidence against
the null hypothesis. The test result stays the same when the amounts are in
dollars or million of dollars.

The test results in the two examples show that the assumption of stationarity
is not valid for the owner payment problem. The following section looks
at the behaviour of a non-stationary P matrix throughout the project and
the difference in the prediction accuracy between assuming stationarity and
non-stationarity.



4 Behaviour of non-stationary transition probability matrices C80

4 Behaviour of non-stationary transition

probability matrices

The change in the calculated payment likelihood due to changes in the entries
of the (non-stationary) transition probability matrix along the project is
of interest. This section examines the time dependent payment likelihood
obtained by allowing P(τ) to change after every claim entry. The steady state
of P(τ) and its rate of approaching this steady state are ascertained.

Let P(τ) be calculated from the summaries of the accumulating outstanding
project money against the age of claims made up to time point τ. The
newly calculated transition probabilities are then substituted for the constant
probabilities in the Carmichael–Balatbat model. The evolving probabilities
of being in state k,k = n,n ′, 0, 1, 2, . . . ,n− 1, denoted by vector π, are used
as an indicator of the time dependent behaviour of P(τ). Data from the two
Examples 3.2 and 3.3 are used to demonstrate the results.

Compared to the stationary case, modelling with non-stationary transition
probabilities is far more complicated while the generalisation power is less.
Every entry of P, and hence every model output is a function of time [9], and
largely depends on the specific data being used. The changing entries in P(τ)
can also be difficult to establish. Existing literature focuses on the estimation
of the non-stationary transition probabilities (especially when they are not
observable), their convergence (if any) and the rate of convergence [10, 19, 9,
e.g.]. In the owner payment case, the non-stationary transition matrices are
observable. Still, there is no general solution to the equation π = πP, and
therefore the analysis by Carmichael and Balatbat [6] cannot be generalised
to all claims submitted at any time point along the project. It is only true
for one particular claim submitted at the time point (or phase) τ at which
the transition matrix P(τ) is estimated and used in the calculations. The
analysis does not need to be redone; however, its generalisation power is lost.

The initial state probability vector for a newly submitted claim is π =
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[0, 0, 1, 0, . . . , 0]; that is, there is probability 1 of being in the transient state 0.
The first entry of the vector π, which corresponds to the probability of being
in state n ′, is the probability that the amount is paid. Under the assumption
of stationarity, after one time period, the probabilities of that amount being
in states k are πP, after two time periods πP2, after three time periods πP3,
and so on. Under the assumption of non-stationarity, if a claim is submitted
at time point τ and P(τ) is the transition probability matrix estimated at
that time, then after one time period π changes to πP(τ), after two time
periods π changes to πP(τ)P(τ + 1), after three time periods π changes
to πP(τ)P(τ+ 1)P(τ+ 2), and so on. In general, the vector π satisfies [19]

πT = πτ

T−1∏
r=τ

P(r), T = τ+ 1, τ+ 2, . . . . (8)

Consider Example 3.3. Under a stationary assumption, the probabilities of a
claim being paid in the first, second, third and fourth time periods (fortnights)
after claim lodgement are 0, 0.709, 0.837 and 0.857, respectively. Under a
non-stationary assumption, if the claim is made in the first month of the
project then the probability of it being paid after one to four time periods
evolves as 0, 0, 0.372 and 0.372, which is far different from those obtained in
the stationary scenario. However looking further ahead in time, if the claim
is made in the ninth month (a time closer to project completion) then the
probabilities of it being paid in the first, second, third and fourth fortnights
are 0, 0.720, 0.853 and 0.871, which are almost the same as those calculated
in the stationary case. That is, towards the end of the project, when the
non-stationary matrix P(τ) approaches the stationary matrix P, the entries
of vector π also approach those of the stationary case.

In order to identify the point at which the entries of π given by P(τ) are close
enough to those given by P, the entries of π are plotted for the same unit
claim made at different times τ along the project timeline. The entries of π
for the non-stationary case are calculated at every time point τ = 1, 2, . . . , 9
using P(τ). For demonstration purposes, the probability that an amount being
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Figure 1: Probability of being paid at four fortnights following claim lodge-
ment. Stationary and non-stationary approaches. Example 3.3.

paid four fortnights after its submission, using the two approaches, is shown
in Figure 1. The horizontal axis shows the month (τ) in which the claim is
submitted, different months result in different values of πP(τ)P(τ+1)P(τ+2).

Of 12 claims in total, Figure 1 shows that the probability of a claim made
in the first, second, third or fourth month being paid after four fortnights
estimated using the two approaches is quite different. However, from month
five onwards, the estimation results using non-stationary and stationary
approaches are almost identical. It only takes a few time periods before the
results obtained based on a stationary assumption become as accurate as
those obtained by a non-stationary approach.

Consider Example 3.2. Because the first seven claims were not paid, the
first entry of π remains at zero if a new claim occurs in the first seven
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Figure 2: Probability of being paid at four weeks following claim lodgement.
Stationary and non-stationary approaches. Example 3.2.

months. If a new claim is made in months eight, nine or ten, then the
difference in the evolving first entry of π between the non-stationary and
stationary approaches is very large. From month 17 onwards, the values
of πP3 and πP(τ)P(τ+ 1)P(τ+ 2) become almost the same. The first entries
of π under stationary and non-stationary assumptions are shown in Figure 2.

Large claims and the time at which they are made can strongly influence
the values in P(τ). Large-valued claims dominate P(τ) over small claims; for
example, if a large claim was submitted but was not paid (within the defined
time allowance) then the value of P(τ) before and after this claim entry may
be quite different. In Example 3.3, P(τ) reaches its steady state after four
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claims (of 12 in total) partly because the large claims (in a relative sense)
were mostly submitted at the beginning. In Example 3.2, the larger claims
are submitted in the second half of the project, leading to a longer fluctuation
period (16 out of 41 claims) before P(τ) reaches its steady state.

In both case examples, it only takes less than half of the claim list for the non-
stationary transition matrix to reach a steady state position where the entries
in P(τ) become stable and very close to those estimated under a stationary
assumption. That is, the long-run steady state transition probabilities are
reached relatively quickly. On this basis, it is considered that the extra time
and complication in computing a non-stationary P(τ) is not worthwhile.

5 Conclusion

The article gives a validation, for application purposes, of the assumption
of stationarity in the Markov formulation of owner payments. Likelihood
ratio tests were performed to test the hypothesis that P is constant over time
against the alternate hypothesis that P is time dependent. Two case studies
were used for testing. The tests found that the null hypothesis is rejected at
the 5% level of significance in both cases, implying that the assumption of
stationarity does not hold for the owner payments formulation for these two
data sets.

Despite the rejection of the stationarity hypothesis, further comparison be-
tween the model outputs given by stationary and non-stationary transition
matrices showed that the stationary approach still yields acceptable accuracy
for a contractor’s estimation purposes. Non-stationary transition matrices
were calculated at every claim entry in a project’s claim list. The time
dependent behaviour of P(τ) was then illustrated through the evolution of
the probability of a claim being paid in the subsequent time periods after
claim submission (vector π). It was shown that P(τ) reaches a steady state
after approximately one third of the claim list and the steady state values
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are within the ±10% range of those given by using a stationary P matrix.
This implies similar outputs are produced by stationary and non-stationary
transition matrices in the later two thirds of the projects.

When doing the analysis using the non-stationary transition matrix approach,
a contractor could expect fluctuation in the entries of the P(τ) matrix before
a steady state is reached. In terms of payment likelihood, it is anticipated
that the vector π for claims in the early part of a project using a stationary P
matrix will differ from those estimated using a non-stationary P(τ). In many
cases, claims made earlier in a project are lower than those made later, and the
discrepancy in results, between stationary and non-stationary assumptions,
in the early part of a project will be small. For the later two thirds of a
project, there is almost no difference between payment likelihood estimated
using stationary or non-stationary assumptions.

These conclusions were derived based on two case study projects of different
types and sizes. However, the presented test procedure and analysis could be
extended to other project data sets. Further research could examine the time
dependent behaviour of the transition matrices by expressing the transition
probabilities as functions of time. Accordingly, the Carmichael–Balatbat
formulation could be modified to incorporate time as a variable.

For application purposes, we recommend a contractor assume that the P ma-
trix is constant over the entire project when estimating payment probabilities.
The entries of P should be calculated using a payment profile, which is a
summary of total outstanding project money against time passing since claim
lodgement. The summary can be done for all claims, or for all claims of
one type (for example, progress claims, variation claims or extension of time
claims). This approach is straightforward and practical, yet of sufficient
accuracy.
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