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Abstract

Accelerated testing is often used to gauge the reliability of a product
before it is released to the market. Warranty data provide valuable
additional information about the reliability of a product and its con-
stituent components via field data. In this study, warranty data
provided by an Australian automobile manufacturer is used. This
article considers the need to clean the data before commencing any
analysis. It discusses the distribution of warranty claims and the use
of warranty data to model the reliability of elemental components of
an automobile. Various model options are considered before suitable
modelling is adopted. The reality of modelling the reliability of a
vehicle containing a large number of components is considered and a
suitable method is adopted. Verification of the reliability modelling is
made by comparing an estimated warranty cost with the actual cost.
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1 Introduction

Warranties represent a significant cost to the manufacturer. In the North
American automotive industry, spending has reached close to tens of billions
of dollars and is increasing [16]. In order to properly manage a product’s
warranty liability, it is vital to model the reliability of a product and the cost
of servicing the warranty on that product. This is particularly important
in the Australian automotive industry, where warranty terms have recently
been increasing. Foreign manufacturers have offered more generous warranty
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terms than their local counterparts in an effort to establish themselves in
the local market. This has forced local manufacturers to assure customers of
their products’ build quality by increasing their own warranty terms.

This study uses an Australian car manufacturer’s warranty data to create
component reliability models, which are then used to predict the overall
warranty cost. It is important to commence any modelling by identifying the
assumptions made. A brief outline of survival analysis techniques is provided
in this article before they are applied to the manufacturer’s database. The
need to clean the data is established herein. We discuss how to analyse the
database containing a large number of parts having few claims.

Often, a manufacturer’s reliability model of a product is inaccurate. For
example, Majeske and Herrin [13] found that a manufacturer’s exponential
reliability models predicted only half the actual failure rate of a car radio and
underestimated the number of warranty claims on a brake system by a factor
of four. They concluded that more accurate modelling can be achieved using
the Weibull distribution and that predictive models obtained from bench
testing need to be verified against field data. Various model options are
considered in this study and then verified against the actual warranty cost.

2 Modelling considerations

2.1 Assumptions

In fitting a model to the warranty data, the following standard assumptions
are made [2]:

• Each failure of the component during the warranty period leads to a
claim and all claims are valid;

• There are no significant delays in making a claim;
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• Failure times of the component are independent and identically dis-
tributed;

• Repair times are small compared to the mean time to failure of the
component;

• All repairs are as good as new;

• The distance travelled by a vehicle before sale is negligible;

• The number of vehicles that are taken out of service during the study
is negligible.

2.2 Dimensionality of the warranty

The manufacturer’s warranty is for three years or 100, 000 km, whichever
comes first. This is an example of a two dimensional warranty, since it is
limited by both time and usage restraints [1]. The manufacturer has accurate
information about a vehicle’s age, as this is derived from the manufacturing
database. However, the distance field in the claims database contains inaccu-
racies. Evidently, some dealerships enter false figures into this mandatory field
in order to complete the form. Moreover, if a claim has not been made on a
vehicle, the distance it has travelled by the end of the experiment would need
to be estimated. Censored data so formed would then be inaccurate [4, 8].
This makes time the preferred restraint upon which to model warranty claims.
In addition, since most manufacturers have a monthly reporting period, time
is the more convenient variable upon which to base warranty predictions [12].

Figure 1 plots distance against age of vehicles that are in the manufacturer’s
claims database. Although the data are incomplete (only claims data are
represented), the figure does show that most users reach the time limitation
before the distance limitation. This is supported by data from other studies [10,
11], where usage is calculated to be approximately 22, 500 km/yr. This is
a much lower rate than the 33, 333 km/yr allowance of the warranty in our
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Figure 1: Vehicle usage.

study. These observations again support the use of time as the dependent
variable.

3 Survival analysis

3.1 Kaplan–Meier estimator

The discussion in this section is based on standard texts on lifetime data
analysis [9, 14]. Survival analysis is characterised by the existence of observed
failure times and censored times. The latter occurs when an item is removed
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from further observation. In the case of warranty data, censoring occurs when
a vehicle reaches the end of its warranty.

Various non-parametric survival estimators have been presented in the litera-
ture. The Kaplan–Meier (product-limit) estimator is widely accepted. The
survival of an item to time ti is the product of survival probabilities up to
that time and is Ŝ (t) =

∏
ti6t

[k (ti) − di]/k (ti), where k (ti) and d (ti) are
the number at risk and the number of deaths (or failures) in a time interval,
respectively.

3.2 Parametric fit

The likelihood function L (tj; θ) =
(∏

j∈F f (tj; θ)
) (∏

j∈C S (tj; θ)
)
, where

f (t) is the failure density distribution with parameter set θ, S (t) is the
survival function, F is the set of observations reaching failure and C is the set
of censored items. Maximising this function yields the maximum likelihood
estimator (mle) of the parameters of f (t; θ) [6].

For the exponential distribution, f(t) = λ exp(−λt), with failure rate λ, the
mle of λ is found algebraically to be λ̂ = r/

∑n
j=1 tj , where r is the number

of items that reach failure. The mle of the variance of λ is

Var
(
λ̂
)
=

λ̂2∑
j

[
1− exp

(
−tjλ̂

)] .

The Weibull distribution may be written as

f(t) =
β

η

(
t

η

)β−1
exp

[
−

(
t

η

)β]
,

where β is the shape parameter and η is the scale parameter. The mle of the
Weibull parameters can only be obtained numerically. Standard references
develop the equations for both exponential and Weibull distributions [14].
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3.3 Renewal function formulation

A failed component is replaced by a new one, provided a vehicle is still within
its warranty period. This process is called a renewal process and has been
well documented [5, 18]. For a known failure distribution F(t), the number of

renewals is M (t) = F (t) +
∫t
0
M (t− x) dF (x).

This equation is solved algebraically for the exponential distribution, yielding
the familiar result M (t) = λt . A numerical solution is needed for the Weibull
distribution. The one used in this study was provided by Xie [19].

4 The manufacturer’s data

Having discussed modelling aspects and survival analysis techniques, we now
turn to using the manufacturer’s database to model the reliability of the
components of the vehicle and the subsequent warranty cost.

4.1 Data source

The data used in this study has been made available by an Australian car
manufacturer and consists of two databases. The first identifies 30, 138 vehicles
produced in one year; the second contains the 62, 456 warranty claims made
over the three year/100, 000 km warranty and a little beyond. The data cover
model variations (engine, body type, etc.) of a passenger vehicle. The claims
database identifies the faulty part that led to a claim. Components provided
by different suppliers have different part numbers and are analysed separately
in this study. Although 3, 040 unique part numbers are identified, no one
vehicle contains that many parts. The age of a component was calculated and
used in the survival analysis of that component, whilst the age of a vehicle, a
different quantity, was also monitored.
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Table 1: Number of parts with given number of claims.
No. of claims No. of parts No. of claims No. of parts

1–100 2964 1 1159

101–200 43 2 454

201–300 12 3 262

301–400 5 4 193

401–500 3 5 141

501–600 3 6 89

601–700 1 7 63

701–800 2 8 62

801–900 2 9 44

900–1000 0 10 31

> 1000 6 11–100 466

Exploratory data analysis of the manufacturer’s claims database led us to dis-
cover errors, such as missing data, impossible date sequences, inconsistencies
between a vehicle’s age and distance travelled, and the existence of extreme
outliers. The need to clean the data is well documented [15, 16]. As claims
were entered manually by the dealerships, records are prone to data-entry
errors. However, less than 2% of the records have been found to be in error.
It is important to clean and retain as much of the data as possible because
the removal of records would introduce a bias by reducing the number of
claims. By cross-checking values in one field against that of other fields, it
has been possible to clean and retain all the data.

4.2 Claims distribution

Table 1 shows the number of parts with the given claims frequency, with
1 to 100 claims being further broken down. Inspection of the table reveals
that the vast majority of parts in the manufacturer’s database proved to be
very reliable during the warranty period.
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Of the 62, 456 claims made during the warranty, 1, 159 parts were replaced
once only. For these parts, the choice of parametric model is somewhat
arbitrary. Similarly, for parts with few failures and numerous censored data,
many models could fit the data. In such cases, it is practical to fit a simple
exponential model.

4.3 Parametric models

Various models have been fitted to the observed data and compared via their
maximum likelihood values. Table 2 reveals that the maximum likelihood
values for the various parametric models are similar, with the few exceptions
having values of a different order of magnitude. The reason for this occurrence
has not been pursued in detail, but in most cases, it appears to be due to only
one or two extraneous points. From the log likelihood values, no particular
model stands out as providing a superior fit to the others.

The Weibull distribution is a widely accepted failure model in reliability
applications [3]. It has flexibility and includes other distributions for particular
values of its shape parameter. For example, when β = 2 the Weibull simplifies
to the Rayleigh distribution. Table 2 shows that the Weibull model provides
good log-likelihood values as well as consistently good fits, making it a suitable
model to use with our data.

When few failures are observed, most models provide a reasonably good fit.
Thus, the exponential distribution is as good a model as any other, and because
of its mathematical tractability, is suitable under such circumstances [7].
Because our database contains a large number of parts, an onerous amount
of computation time is required to fit parametric models. After careful
examination of the claims distribution, it is clear that an exponential model
is appropriate for parts with less than 20 claims.
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Table 3: Total warranty cost, variance and confidence limits.
Warranty cost Standard deviation 95% ci

Exponential $272.84 $9.83 [$253.58, $292.11]
Weibull $272.62 $5185.17 [$0, $10435]

5 Model verification

In order to verify the reliability models, the cost of the repair of each com-
ponent, which is a stochastic quantity, is estimated. Repair cost depends on
many factors, such as previous history of a problem, the mechanic’s experience,
and freight cost. We use the mean cost for a point estimate, but truncate the
data if extreme outliers are present. The variance of the cost is used when
calculating an interval estimate of warranty cost.

To verify the reliability modelling from the last section, the warranty cost per
vehicle is calculated using the expected number of repairs and the expected
cost of component repair. Two failure models are used for this comparison.
The first models all component failures exponentially; the second uses the
exponential distribution for components having less than 20 claims and the
Weibull distribution for the rest. In each case, a 95% confidence interval (ci)
is also calculated. The results are shown in Table 3. The two methods
produced similar point estimates that closely match the actual cost per
vehicle of $275.48. For the Weibull model, the coefficient of variation is
approximately 20, which indicates that the standard deviation is too large
to be of practical use. This is also evident from the large ci. We developed
more useful cis for the Weibull parameters using simulations [17].

It appears that the additional processing required in the Weibull model is not
justified because the estimated warranty cost works out to be very similar to
that of the exponential model. However, a large number of components have
β estimates that lie outside the interval [0.95, 1.05]. Hence, it is preferable to
use the Weibull distribution to obtain more accurate point estimates of the
reliability of components with β values outside this range.
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6 Summary

This article has shown how a manufacturers warranty database can be used to
model the reliability of components, from which an estimate of the cost of a
warranty can be made. The need to start the analysis with data cleaning has
been demonstrated. The large number of components in the database produces
copious computations. Thus a means of simplifying the computation has been
established. Examination of the frequency distribution of components with
claims within given ranges has proved to be insightful and has led to the use of
two distributions to model the reliability of components. Using log-likelihood
values, the fit of various models have been compared and it has been concluded
that the Weibull model is suitable for components with a reasonable frequency
of claims, whilst the exponential is suitable for components with fewer claims.
This modelling has led to a fairly accurate estimate of the warranty cost when
compared with the actual warranty cost.
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