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Shepherded solitons
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Abstract

We investigate the onset of vector solitons in a three level, cascade,
atomic system. We present an existence curve in the model parameter
space for bright vector solitons. Approximate analytical solutions are
given and the stability of the solutions discussed. Numerical simulations
confirm the analytical predictions.
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1 Introduction

Although solitons are ubiquitous in many branches of physics, self-trapped
optical spatial solitons possess features which makes them potentially useful
for applications such as all-optical switching and routing, interconnections,
parallel computing, and optical storage [1]. Among the known mechanisms
that support the existence of spatial solitons is self-phase modulation or self-
focussing. In this case, due to nonlinearity in the medium, the optical beam
modifies the refractive index and induces an effective waveguide, which then
self-guides the beam. The spatial soliton can be thought of as the fundamental
mode of this waveguide. A wide variety of solitons have been studied and
experimentally verified in different media, including Kerr media, liquid crystals,
photorefractive and photovoltaic crystals [1], quantum dots [2] and atomic
systems [3, 4]. A single soliton described by the nonlinear Schrödinger
equation (nls) propagates at constant speed with a fixed spatial profile. Such
solitons are known as scalar solitons. An important problem is the interaction
of two such solitons which is governed by a set of coupled nls equations,
the nonlinear coupling between the two fields is governed by cross-phase
modulation. A shape preserving solution of such equations is called a vector
soliton because of its multicomponent nature [1].

We consider the propagation of two intense optical beams of different frequen-
cies in a Kerr-like medium composed of uniformly distributed, three level,
atomic systems in the cascade configuration for which the atoms are initially in
the ground level [4, 5, 6, 7]. Two intense optical fields of different frequencies
induce dipole allowed transitions from the ground level to an intermediate
level, then from the intermediate level to the top level. We assume a closed
atomic system where the top level decays to the intermediate level and the
intermediate level to the ground level with different decay rates. The direct
transition from the top to the ground level is a dipole forbidden transition.
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Ansari et al. [5] derived the steady state expressions for the third order
susceptibilities experienced by two optical fields propagating through a Kerr-
like medium. Using these expressions a version of the coupled nls equations
was derived. We study a normalised version of the system:

i
∂u

∂z
+
∂2u

∂x2
+ σ1|v|

2u = 0 ,

iα
∂v

∂z
+
∂2v

∂x2
+ σ2

(
|u|2 + η|v|2

)
v = 0 , (1)

where α > 0 , 0 < η < 1 , and σj = ±1 . If σ1 = σ2 = +1 this indicates the
optical medium has a focusing nonlinearity and the system (1) allows so-called
bright solitons—solitons with a single central peak in the intensity profile.
However, if σ1 = σ2 = −1 , then the medium has a defocusing nonlinearity
and system (1) exhibits dark solitons—solitons with a dip in its otherwise
uniform intensity profile. A mixed state of one field as a bright soliton and
the other a dark soliton is also possible when the medium is defocusing.
Exact bright and dark solutions found by Ansari et al. [5] revealed that the
amplitudes of the vector solitons can be equal or vastly different.

The simplest solution of interest of system (1) consists of zero in the first
component, u, and a soliton in the second component, v. This is essentially
a scalar soliton. Our interest is to determine the onset of bifurcation from
the scalar soliton to the vector soliton. In particular, we study the dynamics
in the vicinity of the bifurcation point where the amplitude of u is smaller
than v, but non-zero. We refer to such solitons as shepherded—the larger
amplitude beam acts as a shepherd to the smaller one.

2 Analytical results

Assuming σ1 = σ2 = +1 we look for stationary solutions of the form

u(x, z) =
√
β1e

iβ1zu(x), v(x, z) =
√
β1e

iβ2zv(x).
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After rescaling x→ x/
√
β1 system (1) becomes

d2u

dx2
− u+ v2u = 0 ,

d2v

dx2
− λv+

(
u2 + ηv2

)
v = 0 , (2)

where λ = αβ2/β1 .

If the field u(x) = 0 , then the system reduces to the canonical nls which has
the well-known fundamental bright soliton solution [8]

v(x) =

√
2λ

η
sech

(√
λx
)

.

When λ = 1 , an exact solution for a vector soliton (a soliton where both
fields have non-zero intensities) exists [5]:

u(x) =

√
2 (1− η)

η
sech (x) , v(x) =

√
2

η
sech (x) . (3)

At some point in the parameter space (η, λ) of system (2) the vector soliton
solutions must bifurcate from the single bright soliton of the standard nls. In
order to investigate where in the parameter space this might occur and what
intensity profile the resulting solitons have, we apply a regular perturbation
to (2) of the form

u(x) = εu1(x) + O
(
ε2
)

, (4)

v(x) = v0(x) + ε
2 v2(x) + O

(
ε3
)

. (5)

At zeroth order we reproduce the nls

d2v0

dx2
− λ v0 + η v

3
0 = 0 ,

and at first order in ε we have

d2u1

dx2
− u1 + u1 v

2
0 = 0 . (6)
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Figure 1: The solid (green) region of the parameter space is where only the nls
soliton may exist. Beyond the solid region one can find bright vector solitons.
Close to this boundary the bright solitons will have a small amplitude u
component. The (red) dot indicates the parameters used in Figures 2, 3 and 4.
The black dots are the bifurcation points of the bright vector solitons given
by the perturbation analysis.
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Taking the fundamental bright soliton solution of the nls as the zeroth order
solution we substitute for v0 in the equation for u1 to give

d2u1

dx2
− u1 +

2λ

η
sech2

(√
λ x
)
u1 = 0 . (7)

Equation (7) is common in quantum mechanics [9] and optics [10]. Using
the transformation y = tanh

(√
λx
)

Equation (7) becomes the associated
Legendre equation(

1− y2
) d2u1
dy2

− 2y
du1

dy
+

(
2

η
−

1/λ

1− y2

)
u1 = 0 ,

which has a general solution in terms of associated Legendre functions of the
first and second kind [11]:

u1(x) = c1P
m
l

(
tanh

[√
λ x
])

+ c2Q
m
l

(
tanh

[√
λ x
])

.

As we desire localised solutions we immediately set c2 = 0 . Further we
identify that

m =
1√
λ

, l =
1

2

(
−1+

√
1+ 8/η

)
. (8)

It follows directly from the requirement of non-zero width beams that m 6= 0
and, to ensure localised solutions, m and l must be integer. Thus the first
three solutions for u1(x) are

P11 (y) = − sech (x) , λ = η = 1 , (9)

P12 (y) = −3 tanh (x) sech (x) , λ = 1 , η =
1

3
, (10)

P22 (y) = 3 sech2
(x
2

)
, λ =

1

4
, η =

1

3
. (11)

The correction, v2(x), to the nls soliton is the solution of the equation

d2v2

dx2
− λv2 +

6λ

η
sech2

(√
λx
)
v2 = −

√
λ

η
sech

(√
λx
)
u1 .
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Figure 2: Bright vector soliton profile for η = 0.58 and λ = 0.5 . The
profile is calculated numerically by solving system (2). The boundary for
existence is at η =

√
2/(
√
2+ 1) ≈ 0.5858 . The ratio of the peak intensities

is |u|2/(η|v|2) ≈ 0.01 .

Using the same transform, as above, y = tanh
(√
λx
)
, localised v2(x) is found

in terms of P12 (y) and integrals of P12(y) and Q1
2(y).

The bright vector solitons should bifurcate from the nls solitons when the
values of λ and η allow a single peaked intensity profile for u(x). This occurs
when m = l . The perturbation solution requires that m, l ∈ N .
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3 Numerical results

The system (2) was solved numerically using a standard boundary value
solver [12]. The boundary values at infinity were approximated as u(L) = 0
and v(L) = 0 where L was made large enough to allow the amplitudes of
the profiles to decay sufficiently so that the approximation was reasonable.
Typically L ≈ 20 was required to ensure the beam was fully localised before
the end of the computational window was reached. The other boundary
conditions were taken to be u ′(0) = 0 and v ′(0) = 0 . A typical example of a
low amplitude or shepherded soliton is given in Figure 2.

The existence boundary in Figure 1 was found by solving system (2) starting
with the known exact vector soliton solution for a given η. The value of λ
was then reduced and the system solved again. By repeating the process the
stationary vector solitons were found until the integral

Qu =

∫∞
−∞ |u|2 dx < 10−3,

which means that the u field is sufficiently small to be considered a per-
turbation to the v field. Interestingly, if the restriction that m and l are
integer in (8) is lifted, then an approximate existence boundary in parameter
space is found for bright vector solitons. The boundary is well described
by η ≈ 2λ/(

√
λ + 1) and the difference from the numerically determined

boundary shown in Figure 1 is no larger than 10−4.

The full system of partial differential equations (pde) (1) was numerically
solved using an adaptive step size split–step Fourier method [13]. The split–
step Fourier method is a standard pde solver used in the field of (linear
and nonlinear) optics. The basic idea behind the method is that linear and
nonlinear operators of the pde are treated separately. The spatial derivative
terms which make up the linear operator are dealt with in Fourier space and a
standard ordinary differential equation solver (such as a Runge–Kutta scheme)
deals with the nonlinear operator. The approximation to the pde comes from
how one splits these operators and chooses to recombine the results. Sinkin et
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Figure 3: The intensity of the u(x, z) resulting from a simulation of system (1)
with α = 0.5 , η = 0.58 , σ1 = σ2 = 1 and an initial profile u(x, 0) =
0.1 sech

(√
αx
)
. The initial profile is not a soliton solution and so the beam

profile is not stationary during propagation.

al. [13] detailed a version of the method which maintains global third–order
accuracy by adapting the step size in the propagation direction—in the case
of (1) z is the propagation direction—and it is this version of the method we
utilise here.

Figures 3 and 4 show the propagation of the u(x, z) and v(x, z) fields respec-
tively. Initially the fields are set to a profile which is close to but not exactly
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Figure 4: The intensity of the v(x, z) under the same conditions as Figure 3
and initial condition u(x, 0) = 1.3 sech

(√
αx
)
.

the shape of the stationary solution shown in Figure 2. The profiles are then
propagated numerically for a distance of 100 units. Because the initial profiles
are not stationary solutions, small oscillations in the beam amplitude are
visible in Figure 3. The scale of the intensity axis in Figure 4 masks the
oscillations. A linear stability analysis of the solutions was not performed but
the modulational instability studies by Ansari et al. [5] and long propagation
distance shown here suggests that the bright solitons are, at least, observable,
if not actually stable. The fact the beam does not collapse or self-focus to a
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singularity indicates the soliton solution about which the beam oscillates is
stable at least to small perturbations.

4 Conclusion

We analysed the case in which one field is so weak compared with the other
that it does not affect the propagation of the much larger amplitude and
therefore more intense field. However, the intense field still affects the weak
field through cross-phase modulation induced coupling. Under appropriate
conditions, the soliton can trap the weak field completely through soliton-
induced waveguiding. Physically, the intense field propagating as a soliton
changes the refractive index of the nonlinear medium and creates an effective
waveguide. A weak field is trapped by this waveguide and propagates as a
guided mode. This phenomenon may be referred to as beam shepherding.
We have shown that the mechanism behind beam shepherding leading to
the formation of vector solitons is associated with bifurcations of a scalar
soliton. We found an approximate analytic expression for the boundary that
partitions the parameter space into scalar solitons and vector solitons. In the
vicinity of the boundary where shepherding occurs we obtained approximate
analytic solutions for the vector solitons. Numerical simulations indicate that
these vector solitons are stable.
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