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Piecewise linear approximation to Fisher’s
equation

7. Jovanoski' G. Robinson?

(Received 11 January 2012; revised 30 July 2012)

Abstract

A simple method is presented which allows the replacement of
a nonlinear differential equation with a piecewise linear differential
equation. The method is based on the idea that a curve of the nonlinear
terms of the dependent variable in a differential equation can be
replaced by an approximate curve consisting of a set of line segments
tangent to the original curve. We apply this method to the ubiquitous
Fisher’s equation and demonstrate that accurate solutions are obtained
with a relatively small number of line segments.
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1 Introduction

Formation and propagation of waves are sometimes described by a reaction-
diffusion type partial differential equation (PDE), such as Fisher’s equation.
First introduced as a model for the propagation of a mutant gene [1], Fisher’s
equation has subsequently been used in population growth models [2], auto-
catalytic chemical reactions [3], and the healing of wounds [4].

Finding solutions to a nonlinear PDE is a difficult and challenging task.
This certainly is true of Fisher’s equation, even if it is the simplest of the
reaction-diffusion equations—its nonlinearity is a simple quadratic,

ou  o%u

— =—+u(l—u). 1
The problem of finding exact solutions is often made easier by looking for
travelling wave solutions. Assuming the wave is travelling in the positive
direction, the substitution & = x — ct reduces the original PDE to an ordinary
differential equation (ODE),

— t+c—+u—u =0, (2)
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where ¢ is the wave speed. Employing different techniques Ablowitz and
Zeppetella [5] and Wang [6] obtained explicit travelling reaction front solutions
for the special case ¢ = 5/v/6, namely

1
ul) = ————, 3
(1 + ret/Ve)2 )
where 1 is an arbitrary positive constant arising from the translational sym-
metry of Fisher’s PDE (1). The value of 1 sets u(§) at £ = 0. For example,

the choice T = v/2 — 1 ensures u(0) = 1/2.

This article presents a method for finding an approximate solution to Fisher’s
equation. The basic idea is to replace the quadratic term by a piecewise linear
function, thus replacing the nonlinear ODE by a set of linear inhomogeneous
ODEs. The following sections outline the construction of the piecewise linear
approximating function and its application to Fisher’s equation. For illustra-
tive purposes we use the special case of ¢ = 5/v/6, for which exact solutions
exist, thus allowing estimates to be made of the accuracy of the piecewise
approximation. However, the strength of the piecewise approximation lies in
the fact that it may be applied to cases where an exact solution does not exist.

2 Approximating function

A travelling wave solution w(£) of the ODE (2) is sought satisfying 0 < u(&) <
1. The piecewise linear approximating function to Fisher’s equation involves
the replacement of the quadratic curve, f(u) = u? over the domain 0 < u < 1,
with a bounded polygonal line, as shown in Figure 1. If this approximating
function consists of very many line segments, all of them tangent to the
quadratic curve, the solution that is obtained approaches the exact solution
of the nonlinear problem. In practice, only a few line segments tangent to

the quadratic curve are sufficient for good accuracy (see Figure 1).

In the simplest case the piecewise linear function consists of two line segments,
both tangent to f(u), one at the end point u = 0 and the other at the end
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u = O UQ(&))

f(u)

u=0 UQ(£2) Uy (51) UO(ﬁO) u=1

Figure 1: Plot of nonlinear term f(u) = u? with an approximating piecewise
linear function consisting of two segments (top) and three segments (bottom).

The approximating function fi(u) is tangent to the curve at u =0 and uw =1
1
= 5 and

for the two line segments and tangent to the curve at u =0, w (&) = 3
u =1 for the three line segments.
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point uw = 1. The choices of u =0 and u = 1, the fixed points of Fisher’s
equation, are used to ensure that the approximate solution has the correct
asymptotic behaviour. In this case the approximate linear function fi(u) is

0, O0<u<uy,
fi(u) = ° (4)
2u—1, yy<<ux<li.

Here uy(&o) = 1/2 is the point of the intersection of the two line segments as
depicted in the top plot of Figure 1.

In the case of three line segments, a middle line segment tangent to f(u) at
some interior point u = u; is added to the approximation (4). The resulting
approximating function is

O, O<u<u27
filu) =< 2uyu—uf, w <u<u, ()
2u—1, U<u<sl.

The points u;y(&;) and (&) are the points of intersection of the line segments
as shown in the bottom plot of Figure 1. Each of these points is written in
terms of ui(&;), as u, = u;/2 and uy = (u; +1)/2.

For the three segments case, u; could be chosen at random or be specified.
However, it is possible to choose u; to optimise the solution. There are several
ways this might be done, one way is to choose u; to minimise f; lu?—f(u)| du.
Breaking up the integral then integrating over each line segment and using a
generalised version of Leibniz rule results in

d ! 2 wy 1
Setting the right hand side to zero yields w(&) = 1/2. It follows that
w(&) = 1/4 and ug(éy) = 3/4. These optimal values are used in the
analysis of the next section.
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3 Application to Fisher’s equation

The PDE (1) possesses a stable state at w =1 and an unstable state at u = 0.
The front propagating at a constant speed c into the the unstable state is
expressed by the ODE (2). With ¢ = 5/1/6, the explicit solution (3) represents
a wave moving at a constant speed in the positive direction satisfying the
boundary conditions w — 1 as & — —oo and uw — 0 as & — oo . Further, the
solution passing through w(0) = 1/2 requires that r = v2 — 1.

Our aim is to apply the piecewise approximating function with two and three
segments to the ODE (2).

3.1 Two segments

Substituting the approximation (4) for the nonlinear term in the ODE (2)
leads to

d>u  du —u, O0<u

- + C— =

dé? d§ <u
The solution to this piecewise linear second-order ODE is

Ae’+t 4+ Be &, &> &,
u(((_,): ALE A_E
1+ CeMc+Detc, &<

where
—c+tVc2—4 —cEtVc?+4
= A=
2 2
The constants A, B, C, D and &, all need to be determined. Requiring u — 1
as & — —oo, implies D = 0. By construction w(&y) = 1/2 (see Figure 1).
Continuity of u(§) at &y leads to

O+

1
Ao —
, Ce 7

N =

Aeo-+50 + ‘Bec—io —
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Similarly, continuity of the derivative of w(§) at &, leads to
Ao e’ % 4 Bo_e®f = CA et
These equations establish the constants

_ 2
A:1<1 5), B:—1<1+6), P A
2vV/c?—4

2\2

For 6 to be real and finite requires ¢ > 2 for a wave travelling in the positive
direction. The only remaining free parameter is &y. Setting &y = O enables
direct comparison with the explicit solution (3). For the case ¢ =5/ V6,

e 28/V6 _ 1o-38/V6
u(é) = { ?

£20,
1—let/ve, £<0. (7)

VA%

This form of the solution was first obtained by Rinzel and Keller [7] for
propagation of a nerve impulse.

3.2 Three segments

Using the approximation (5) the travelling front ODE becomes

2 —u, 0 Su< 411 >
du du ; ] 3

a2 Tl T e asush

u—1, 3<u<]l.

The solution over each line segment is
Ae’+t + Be5, &= &,
W) =< —p&+C+De b, & <&, (8)

T+EeME+Fert  £<&.
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Requiring uw — 1 as § — —oo, implies F = 0. Continuity of u(&) at &,
requires

Eetbo = —— (9)
1
——& +C+De ™ == 10
1 &+ C+De (10)
Continuity of the derivative of u(&) at &y requires

EA,eMbo = —4l — cDe %0,
c

Substituting for E entails
eCE»O
4c?

Since u(&;) = 1/2, setting & = 0 gives C+ D = 1/2. Continuity of u(&) and
its derivative at &, yields

D=(A;c—1)

Ae®+t2 4 Be® &2 = %, (11)
1 1
— De %2 = — 12
e &+ C+De 1 (12)
and
Ao, e’ % 4 Bo_ e’ %2 = ! = L cDe ¢ (13)
B 4 4c

Multiplying Equation (11) by o, (and likewise by o_) then subtraction of
Equation (13) leads to
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Substituting for D and then solving for A and B results in

e—G+iz
A=—— " 5 Ac—1 cl&—&2) 4 14
delo ol [o_c+ (Arc—1)e +1], (14)

e—G—iz
B=——— [0‘+C + (Apc— 1)e°(‘5°_£2) + 1] . (15)

4c(oy —o0_)

Further, substituting for C in Equations (10) and (12), then adding and
subtracting them leads to two coupled algebraic equations relating &y and &;,
namely

—(&—&)+(Ae—=1)(1— ec(a"_m) 2¢* =0, (16)
—c(&g+ &)+ (Arc—1)(1 4 eleo82) _ ecto) — (. (17)

Letting & =&, — &, and for the special case ¢ =5/ V6 these equations reduce
to

5V6E—e/VE 451 =0,
5V6(28) — &) + e5E/Ve e/ Ve L1 — .

From the first of these equation & ~ —4.16, then from the second &y ~ —2.12.
The complete solution over the three segments is then

[<9+esa/f> 2(6-£2)/V6
4 5a/f) 36— az)/f] >
w(E) = f( e I (18)
1 vBg L (emSE)/VE _ 5t/VE) i < E < Ey,
\1 JT (&=&0) /\f E<&.

4 Comparison with exact solution

Figure 2 shows the result of the piecewise linear approximation applied to
Fisher’s equation compared with the exact solution (3). The upper plot shows
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Figure 2: The exact (3) and approximate solutions (7) and (18) to Fisher’s

equation for the special case of ¢ = 5/v/6 are presented in the top plot. The
difference between them is depicted in the bottom plot.
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the approximate solutions are quite good. Employing two segments provides
a reasonable solution; however, using three segments offers a much improved
solution. Both solutions have the correct asymptotic behaviour. The bottom
plot illustrates the difference between the exact solution and the two and
three segment solutions. As expected, the three segments solution is a better
approximation over the entire domain. Using two segments the maximum
error is about 12%. The error falls sharply to about 3% using three segments.

5 Conclusion

The idea of approximating the nonlinear term in a PDE or ODE with a piecewise
linear function is conceptually simple. What seems rather remarkable is the
high level of accuracy achieved even in the case of as few as three line
segments [8]. The method is used to find an approximate solution for the
important Fisher’s equation. Solutions based on two and three line segments
are derived and compared to the exact travelling wave solution with speed
¢ = 5/v6. Using three line segments for the approximating function the
error is less than 3% over the entire domain.

The only drawback to the method described is that the value of ¢ must be
specified a priori. Since for Fisher’s equation (1) there exists a continuous
family of travelling wave solutions, the question of selection of the wave front
speed arises, as the travelling wave solutions assume all wave speeds ¢ > 2.
A positive initial profile u(x,0), decaying at least exponentially as x — oo,
evolves into a travelling wave. Extensive numerical simulations of Fisher’s
equation (1) demonstrate that if u(x,0) ~ e P* as x — oo, then the initial
profile evolves to a wave front of speed [9]

] 2 \1a
C(B):{;wm, E;

We note from Equations (6) and (8) that the solution should evolve to a wave
speed c(B) given by (19) for p = —o,.

(19)
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