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Practical insight through perturbation analysis
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Abstract

Though industrial processes are perceived to be dauntingly com-
plex from a mathematical modelling perspective, simple mathematical
models often provide remarkable insight. One of the reasons behind
this apparent contradiction is that the mathematical models often
involve small and/or large non-dimensional parameters and therefore
are amenable to simplification through the use of perturbation analysis.
In many cases, the leading order perturbation approximation provides
the bulk of the information about the structure and behaviour of the
solution and is often sufficient to obtain profound insight into the
phenomenon under examination. This article illustrates such utility
of the perturbation analysis by using examples in which leading order
perturbation approximations provide substantial insight into the mode
transition phenomena in the vibrational behaviour of curved beams
and helices. The methodology described in this article can be used in
a wide range of applications to reveal the simplest possible structure of
the mathematical model that answers the question under examination.
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1 Introduction

It is the easiest thing in the world to formulate complex mathe-
matical models of real-world phenomenon. What is required, for
a good model, is the simplest possible structure that answers the
question under examination. Bob Anderssen, 2004 [1]

Though industrial processes are perceived to be dauntingly complex from a
mathematical modelling perspective, in reality simple mathematical models
often provide remarkable insight. The reasons behind this contradiction
were examined by de Hoog [3] who suggested that one of the reasons is a
robustness of industrial processes, which usually implies that the process is
weakly coupled to the environment and therefore only a few effects dominate.
As a result, robust processes often can be described by simple mathematical
models. The argument in favour of robustness of industrial processes is that
they are often similar to the processes that take place in nature. Examples
include segregation of particles on the basis of size and specific gravity that
takes place on a scree slope and also in a box of cereal. These processes are
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similar to the processes that take place in gravity separators such as jigs.
Another example is crystal growth, which produces spectacular features such
as stalagmites, stalactites and shawls in limestone caves, but at the same time
is also a key process in the production of alumina, table salt and refined sugar.
Further support for robustness is that many industrial processes are quite
old and were successfully implemented long before sophisticated computer
control was even envisioned. It would simply not have been feasible in the
past to implement processes that were not robust.

Another important reason behind the possibility of model simplification is
that the mathematical model of industrial processes often involve small and/or
large parameters. Typical examples of small and large parameters are aspect
ratios, energy ratios and stiffness ratios, which appear in a large variety
of industrial processes such as metal rolling, vibration of shells, extrusion,
lubrication, and filtration. Problems that contains small or large parameters
are particularly amenable to simplification through the use of perturbation
analysis.

The focus of this article is on the use of perturbation analysis as a tool
for model simplification and for providing an insight into the phenomenon
under examination. A brief introduction to perturbation analysis is given in
Section 2. A particular advantage of perturbation analysis is that it reveals
the simplest possible structure of the mathematical model that still contains
all the important features of the problem under examination. Equations
associated with this simplified description (which are called leading order
perturbation equations) often can be solved in closed form. The resulting
analytic expressions not only highlight the essential structure of the solution,
but also provide substantial insight into the phenomenon. Thus, in practical
applications, a leading order perturbation approximation is often all that is
required as it is capable of providing an insightful answer to the question
under examination. Such utility of perturbation analysis is examined in this
article using three examples from the analysis of the vibration of curved
beams (see Section 3). These examples demonstrate how a leading order
perturbation approximation has provided insight into the mode transition
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phenomenon in the vibration of curved beams and has led to the discovery of a
new mode transition phenomenon in the vibration of helices. These examples
also demonstrate how to examine different regions of the vibrational spectrum
and curvature parameter by introducing different small parameters into the
same mathematical description of the problem. The role of both regular and
singular perturbations is illustrated. Finally, discussion and conclusions are
given in Section 4.

2 Perturbation analysis as a tool for model

simplification

Perturbation methods are among the most useful and powerful techniques for
simplification of models that contain a small parameter (note that a large
parameter is easily converted into a small parameter).

Perturbations analysis involves the following three steps [2]:

1. convert the original problem into a perturbation problem by introducing
or identifying the small parameter;

2. assume an expression for the solution in the form of a perturbation
series and compute the coefficients of that series;

3. recover the solution to the original problem by summing the perturbation
series.

The small parameter is not unique for a given problem and needs to be selected
to address a question under examination. It is preferable to introduce the
small parameter in such a way that the leading order term in the perturbation
series can be obtained in a closed form. The examples in Section 3 illustrate
how different regions of model parameters are studied through the introduction
of different small parameters into the same mathematical model.
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The emphasis of this article is on the leading order term in the perturba-
tion series, as this term often provides the bulk of the information about
the structure and behaviour of the solution. A leading order perturbation
approximation is often sufficient to obtain insight into the phenomenon under
examination, while higher order terms improve the accuracy of the approxi-
mate solution. Examples in Section 3 illustrate how leading order perturbation
approximation provides insight into the phenomenon under investigation and
may even lead to the discovery of new phenomena.

There are two types of perturbations problems: regular perturbation and
singular perturbation. Regular perturbation problems have a unique solution
to the reduced problem (the problem obtained by setting the small parameter,
say ε, to zero), which provides a good approximation to the solution of
the original problem when ε is small. In contrast, the reduced problem
for singular perturbation problem normally does not have a unique solution,
and the treatment of singular perturbation problems is somewhat more
complex. Both singular and regular perturbation problems are illustrated in
the examples in the next section. Both types of perturbations can arise from
the same original problem through the use of different scaling.

Perturbation solutions are often difficult to justify rigorously. The practical
emphasis is on answering the question under examination, and experimental
verification is usually required to validate the perturbation results. This is
illustrated in the following section.

3 Mode transition phenomena in curved

beam vibration

The study described in this section was motivated by a project on the design of
a new gas meter. Specifically, the project required an explanation for the high
frequency mode transition phenomenon in the vibration of arbitrarily curved
beams with clamped ends, that was observed experimentally. The application



3 Mode transition phenomena in curved beam vibration C301

of perturbation analysis in the high frequency region of the spectrum has
provided substantial insight into the mode transition phenomenon, and has
motivated the extension of the analysis to other regions of the vibrational
spectrum and the curvature parameter. This led to discovery of a new mode
transition phenomenon, which occurs with increase in beam opening angle,
as the beam gradually transforms into a helix. This discovery has, in turn,
motivated an introduction of a new structure, a hyperhelix, with intrigu-
ing connection to string theory of elementary particles and with practical
applications in biologically inspired robot actuators.

The examples in this section illustrate that leading order perturbation approx-
imations are capable of providing substantial insight into the phenomenon.
In these examples, different perturbation models have been formulated by
introducing different small parameters into the original mathematical model,
which lead to insight into the mode transition phenomena in different regions
of the vibrational spectrum and curvature parameter. Both numerical and
experimental verifications have been used extensively in the examples in
Sections 3.1–3.3, to verify the validity of perturbation approximations.

3.1 High mode number mode transition

The non-dimensional equations of free vibration of an arbitrarily curved beam
is an eigenvalue problem for the ordinary differential equations of the form [4]
(here, we consider a simplified form of the equations for constant cross-section
of a beam)

−ε{−[κ2(u ′ − κv)] ′ + κ[κ(u ′ − κv)] ′ + [κ(v ′ + κu) ′] ′ (1)

− κ(v ′ + κu) ′′}+ (u ′ − κv) ′ + λu = 0 ,

−ε{−κ3(u ′ − κv) − [κ(u ′ − κv)] ′′ + κ2(v ′ + κu) ′ (2)

+ (v ′ + κu) ′′′}+ κ(u ′ − κv) + λv = 0 ,

where u and v are the non-dimensional amplitudes of tangential and normal
displacements respectively, κ(= κ̂l) is the non-dimensional curvature function,
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l is the length of a beam and κ̂(s̄) is the curvature of the centre line, λ is the
non-dimensional eigenvalue (which is proportional to a squared frequency),
s̄ is the non-dimensional arc length along the beam centre line s̄ = s/l . Here
and henceforth, prime denotes a differentiation with respect to s̄. A small
parameter ε is

ε = h2/12l2, (3)

where h is the beam thickness. The boundary conditions corresponding to
the “clamped” ends are

u = v = v ′ = 0 for s̄ = 0, 1 . (4)

Equations (1), (2) and (4) constitute a singular perturbation as the reduced
problem (obtained by setting ε = 0) consists of a pair of first order differential
equations and six boundary conditions. That problem does not have a non-
trivial solution. More generally, differential equation problems where the
small parameter ε multiplies the highest derivatives are singular perturbation
problems.

To get an insight into the structure of the solution, it is useful to study the
vibration of a beam with constant curvature [4]. Such studies show that the
leading order approximation (denoted by a subscript 0) for the eigenfunctions
consists of two parts: a slowly varying term and a rapidly varying term, that
is,

u0 = u
(0)(s̄) + ε1/4u(1)(s̄/ε1/4), v0 = v

(0)(s̄) + v(1)(s̄/ε1/4). (5)

The eigenvalues are found by substituting the eigenfunctions into the boundary
conditions (4) and requesting that the resulting system has a non-trivial
solution (which requires that the determinant of the matrix of the resulting
system D(λ0) is zero). The form of the leading order approximation for
eigenfunctions (5) together with the form of the boundary conditions (4) leads
to the following result [4]

0 = det D(λ0) → det M(λ0) det F(λ0) as ε→ 0 . (6)
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Thus, as ε approaches zero, the leading approximation for the eigenvalue
splits into the two asymptotic limits given by equations

det M(λ0) = 0 , (7)

and
det F(λ0) = 0 . (8)

Tarnopolskaya et al. [4] showed that equation (7) describes the eigenvalues of
free vibration of a so-called membrane (a beam with zero thickness and a given
curvature), while equation (8) describes the eigenvalues of flexural vibrations
of a straight beam (a beam with zero curvature and a given thickness).

Assuming that the form of the eigenfunctions (5) is valid for a general beam
curvature function and that the integrals over the beam length of the rapidly
varying terms in the eigenfunctions vanish in the limit ε→ 0 , that is,∫ 1

0

u(1)(s̄)ds̄→ 0 ,

∫ 1
0

v(1)(s̄)ds̄→ 0 as ε→ 0 , (9)

(which is valid for high mode number vibrations), one arrives to the following
equations describing the leading order approximations [4]:

φ ′′ + (λ− κ̄2)φ = 0 , (10)

where φ = −(1/λ)[(u(0)) ′ − κ̄v(0)], and

ε1/4(u(1)) ′ − κ̄v(1) = 0 , −ε(v(1)) ′′′ + λv(1) = 0 , (11)

subject to the boundary conditions

φ ′ = 0 at s̄ = 0, 1, (12)

v(1) = −κφ , (v(1)) ′ = κ ′φ at s̄ = 0, 1 . (13)

Equations (10) and (12) are a reduced sub-problem, which is obtained from (1),
(2) and (4) by setting ε = 0 . It describes the vibrations of a membrane.
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Equations (11) describe the flexural vibrations of a straight beam. The
problems of vibration of a membrane and of flexural vibration of a straight
beam are coupled via the boundary conditions (12, 13).

The existence of the two asymptotic limits for eigenvalues, together with the
analysis of the change in eigenfunctions as the non-dimensional curvature
parameter increases [4], produces a complete description of a mode transition
phenomenon in high frequency vibration of curbed beams. The essence of this
phenomenon is that, with increase in non-dimensional curvature parameter,
some modes undergo the transition from the flexural mode of a straight beam,
though an extensional stage, into an inextensional mode, the frequency and
mode shape of which is closely approximated by those of the next higher
mode of the same symmetry of a straight beam [4, Figures 3 and 4]. During
the stage of extensional transition, the frequency is approximated by the
frequency of the associated membrane vibration problem, while the mode
shape is a superposition of the mode shape of a membrane and the mode
shape of flexural vibrations of a straight beam. The exception is the case
when the boundary conditions (12, 13) are completely uncoupled. This occurs
when κ̄ = κ̄ ′ = 0 for s̄ = 0, 1 and the oscillatory term (mode shape of a
flexural vibrations) then disappears as the eigenvalues approach those of a
membrane. An example of this was presented by Tarnopolskaya et al. [4].

3.2 Low frequency mode transition

The previous section dealt with the mode transition phenomenon in the high
mode number region of spectrum. The analysis has been extended for the
low frequency region of the spectrum [6]. In order to do this, a new scaling
is required. We consider equations (1, 2) again, and introduce the following
scaling [6]

Λ = λ/ε , κ̄ = κ/
√
ε , ū = u/

√
ε , (14)
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We also introduce a one parameter family of non-dimensional curvature
functions of the form

κ = bK(s̄), (15)

where b is the non-dimensional curvature parameter (b = b̂l), b̂ is the
dimensional curvature parameter, and K(s̄) is a given curvature function. A
new small non-dimensional parameter is

ε̄ = hb̂/
√
12 (16)

(this parameter is small for thin beams with small curvature parameter b̂).
With the new scaling, equations (1) and (2) become [6]

ε̄2[K2(ū ′ − κ̄v)] ′ − ε̄2K[K(ū ′ − κ̄v)] ′ − ε̄[K(v ′ + ε̄Kū) ′] ′ (17)

+ Kε̄(v ′ + ε̄Ku) ′′ + (ū ′ − κ̄v) ′ + ε̄Λū/b̄ = 0 ,

ε̄2b̄K3(ū ′ − κ̄v) + ε̄[K(ū ′ − κ̄v)] ′′ − ε̄b̄K2(v ′ + ε̄Kū) ′ (18)

− (v ′ + ε̄Kū) ′′′ + κ̄(ū ′ − κ̄v) +Λv̄ = 0 ,

where b̄ = b/
√
ε . This is now a regular perturbation problem. A standard

perturbation expansion applies

Λ(ε̄) =

∞∑
k=0

ε̄kΛk , ū(s̄, ε̄) =

∞∑
k=0

ε̄kūk(s̄), v(s̄, ε̄) =

∞∑
k=0

ε̄kvk(s̄). (19)

Tarnopolskaya et al. [6] showed that v0 is the solution of

− v ′′′′0 +Λ0v0 = κ̄

∫ 1
0

κ̄v0 ds̄ . (20)

If ∫ 1
0

κ̄v0 ds̄ = 0 , (21)

equation (20) describes the flexural vibration of a straight beam. Equation (20)
provides insight into the mode transition phenomenon. It shows that no mode
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transition occurs if (21) holds. In this case, the frequency and mode shape
of the curved beam are given, up to the zeroth order, by the corresponding
functions for a straight beam. For example, in the case when the curvature
is an antisymmetric function, the modes symmetric in v remain unchanged,
while the modes antisymmetric in v undergo mode transition.

The solution of (20) has a form

v0 = v0h + v0p , (22)

where v0h is the solution of the problem of free vibration of a straight beam
(homogeneous problem)

− v ′′′′0h +Λ0v0h = 0 , (23)

while v0p is a particular solution of equation (20). For a beam curvature
represented by a polynomial of degree up to three, a particular solution is

v0p =
κ̄

Λ0

∫ 1
0

κ̄v0 ds̄ . (24)

Thus, during the mode transition the mode shape represents the superposition
of the mode shape of a straight beam and a component proportional to the
beam curvature function. This highlights a main difference between the high
mode number and the low frequency mode transition phenomenon: in the
former the slowly varying component during the mode transition represents
the mode shape of a membrane.

3.3 From beam to helix

The previous two sections discuss the mode transition phenomenon for small
values of beam curvature. The same equations can be used to study the
vibration of a beam with large curvature. Assuming that the beam curvature
is constant, the opening angle α of the beam is introduced instead of curvature
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function. Once the opening angle becomes greater than 2π, it is impossible
to realise a strictly planar uniformly curved beam of this type. However, to
an adequate approximation, a beam with large constant curvature is treated
as a helix, provided that a helical pitch is small compared with its diameter,
and that motion parallel to the helical axis is ruled out.

The equations of free vibrations (1, 2) are, after some algebraic manipula-
tions [5],

v ′′′′′′+2α2v ′′′′+(α4−Λ)v ′′+Λvα2+ε[Λ(α4v+2α2v ′′+v ′′′′−Λv)] = 0 . (25)

Boundary conditions at the clamped ends are [5]

v ′′′′′ + 2α2v ′′′ = 0 for s̄ = 0, 1 . (26)

Differential equation (25) is a regular perturbation problem. The leading order
approximation is obtained by setting ε = 0 , that is,

v ′′′′′′ + 2α2v ′′′′ + (α4 −Λ)v ′′ +Λvα2 = 0 . (27)

The reduced problem (27) is the familiar equation of flexural vibration of a
portion of a ring. Numerical results show that this approximation provides
sufficient accuracy for a wide range of parameter ε. Equation (27) is studied
further by considering large values of α and introducing a new small parameter

ε̂ =
√
Λ/α2. (28)

A general solution for the eigenfunctions has the form

v = c1f[β1α(s̄− 1/2)] + c2f[β2α(s̄− 1/2)] + c3f[β3α(s̄− 1/2)], (29)

where f ≡ cos for symmetric modes, and f ≡ sin for anti-symmetric modes,
ci and βi, i = 1, 2, 3 , are the unknown coefficients. Following a standard
procedure for determining the eigenvalues (that is, substituting expressions
for the eigenfunctions into the boundary conditions and requiring that the
resulting system of equations in ci has a non-trivial solution) leads to an
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eigenvalue equation which splits into two equations as ε̂→ 0 [5]. This leads
to the existence of the two families of the leading order approximations for
the eigenvalues (a phenomenon similar to that observed in Section 3.1).

For symmetric modes, the two families are [5]

Family I ΛIk = 4α
2(πk)2, k = 1, 2, . . . , (30)

Family II ΛIIk = 2k2π2α[α− (−1)k2 sinα] +O(1), k = 1, 2, . . . ,(31)

while for anti-symmetric modes they are

Family I ΛIk = (πα)2(2k− 1)2, k = 1, 2, . . . , (32)

Family II ΛIIk = 2k2π2α[α+ (−1)k2 sinα] +O(1), k = 1, 2, . . . .(33)

The eigenvalues as functions of α do not intersect. It is therefore possible to
arrange them in ascending order of frequency. This order defines the order in
which the modes of a curved beam take one or another type of vibrational
behaviour at large opening angle.

While the eigenvalues of the two families are of the same order of magnitude,
the mode shapes of the two families are drastically different. For the first
family, the shape of the tangential displacements, up to the leading order, is
of order O(α) and is

u = α sin[2kπ(s̄− 1/2)], k = 1, 2, . . . . (34)

The leading order part of tangential displacements is a slowly varying function.
Tarnopolskaya et al. [5] showed that the transverse displacements are of
smaller order than the tangential ones (O(1)) . The eigenfunctions of the
second family have distinctively different shape. Both the tangential and
the transverse displacements are highly oscillatory functions with spatial
frequency of oscillation proportional to the opening angle, modulated by a
slowly varying function with frequency proportional to the mode index k.

The interpretation of the two families was given by Tarnopolskaya et al. [5].
The first family represents the torsional vibration of a helix with respect to
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helical axis, while the second family represents transverse vibration of a helix
with respect to helical axis. It is rather intriguing that the flexural modes of
the curved beam transforms, with increase in the opening angle, into such a
different types of vibration of a helix!

These results have been extensively tested via a number of experiments
designed to verify both the frequencies and the mode shape with increase in
the opening angle [5]. All theoretical findings have been confirmed.

An intriguing feature of helix vibration is that, at a macroscopic level, the
helix behaves as a straight rod with appropriately low density and elastic
modulus, while the vibrations of a curved beam are hidden.

This work inspired the introduction of a hyperhelix by Fletcher et al. [7].
A hyperhelix of order N is a helix coiled up into a helix, coiled up into
a helix, and so on until this process is repeated N times (in a self-similar
regression that makes the hyperhelix a fractal object). The hyperhelix has
the essential ability to hide dimensions and mode details within an apparently
simple structure, which suggests an analogy with string theory of elementary
particles, in which hidden dimensions are coiled up invisibly within simple
structures resembling strings or spirals [8].

The properties of hyperhelices appear to be useful in practice due to strain
amplification, that occurs because of the hierarchical structure, and ability
to produce specific output displacements [9, 10]. They find application in
biologically inspired robot actuators [9, 10].

4 Conclusions

We illustrated the importance of perturbation analysis in highlighting the
essential structure of the solution and providing a profound insight into the
phenomenon under examination.

Three examples demonstrated that substantial insight into the phenomena
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gained through the leading order perturbation approximation. Numerical and
experimental verifications are needed, not only because of the difficulties of
the rigorous justification of the validity of the perturbation approximations,
but also because a number of simplifications that are usually involved into
the formulation of the model.
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