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Semi-analytical solutions for cubic
autocatalytic reaction-diffusion equations; the

effect of a precursor chemical
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Abstract

Semi-analytical solutions for a cubic autocatalytic reaction, with
linear decay and a precursor chemical, are considered. The model is
coupled with diffusion and considered in a one-dimensional reactor.
In this model the reactant is supplied by two mechanisms, diffusion
via the cell boundaries and decay of an abundant precursor chemical
present in the reactor. The Galerkin method is used to approximate
the spatial structure of the reactant and autocatalyst concentrations
in the reactor. Ordinary differential equations are then obtained as
an approximation to the governing partial differential equations and
analyzed to obtain semi-analytical results for the reaction-diffusion
cell. Singularity theory and a local stability analysis are used to
determine the regions of parameter space in which the different types
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of bifurcation diagrams and Hopf bifurcations occur. The effect of the
precursor chemical concentration is examined in detail and some novel
behaviours are identified.
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1 Introduction

Many chemical reactions display surprising complexity due to the occurrence
of oscillatory solutions and multiple steady state solutions. Oscillations occur
in chemical reactions due to coupling with temperature or an autocatalyst.
There are many experimental studies of chemical systems which develop
oscillatory solutions (such as the Belousov–Zhabotinsky reaction) and mul-
tiple steady state solutions corresponding to breaking wave, mushroom and
isola bifurcation diagrams (such as the minimal bromate oscillator and the
iodate-arsenite reaction); Gray and Scott [1] provide more details of these
experiments in the continuous flow, well stirred, tank reactor (cstr). The
governing equations for a cstr comprise a system of ordinary differential equa-
tions (ode). ode models can be easily analyzed by the standard techniques
of combustion theory. However, when diffusion is important the chemical
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reaction is governed by a system of partial differential equations (pdes) which
are unable to be analyzed by standard combustion theory.

The scheme considered, which represents cubic autocatalysis with linear
catalyst decay and a precursor chemical, is

A+ 2B→ 3B , rate = βab2,

P → A , rate = βkp , (1)

B→ C , rate = βγb ,

where the concentrations of the reactant, autocatalyst and precursor are a,
b, and p respectively. The catalyst is not stable, but undergoes a simple
linear decay. This allows a much wider variety of behavior in the system than
does the cubic reactions alone and mimics some of the behaviours seen in the
experimental studies described above.

Gray and Scott [2, 3] analysed the cubic reaction (1) in a cstr with no
precursor. They found that the model has three types of steady state bi-
furcation diagrams: the unique, mushroom and isola patterns. In addition,
they found the parameter region where Hopf bifurcations occur and discussed
their stability. Kay, Scott and Lignola [4] showed that, when an uncatalysed
conversion step is added, the number of bifurcation diagrams increased to
five. They found two new patterns; the breaking wave and isola breaking
wave patterns. The breaking wave and the isola patterns occurred in very
small regions of parameter space.

Scott [5] and Kay and Scott [6] studied (1) with no precursor, when the
reactor is not well-stirred. This model is governed by a system of pdes, hence
the results were obtained numerically. Four steady state bifurcation diagrams
were identified. The parameter regions, where the breaking wave and isola
pattern occur, were too small to find numerically. Moreover, they found the
parameter regions in which Hopf bifurcations occur. Merkin, Needham and
Scott [7] considered (1) in a cstr. The effect of the precursor chemical on
the stability of limit cycles was considered in detail.
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Marchant [8] considered semi-analytical solutions for (1) with no precursor in
a reaction diffusion cell. The Galerkin method was used to obtain an ode
model, as an approximation to the governing pde system, with the tools of
combustion theory used to analyze the ode model. Singularity theory and a
local stability analysis were used to find the regions of parameter space where
the four main kinds of bifurcation diagram occur, together with the regions
in which Hopf bifurcations occur. A good comparison was found between
the results of the semi-analytical method and the numerical solutions of the
governing pde.

Section 2 presents the governing equations and uses the Galerkin method
to obtain the odes which represent the semi-analytical model. Bifurcation
patterns are also presented and described in detail. Section 3 uses singularity
theory to calculate the hysteresis and isola bifurcation points. Varying the
relative importance of the precursor chemical results in changes in the number
of bifurcation patterns. Section 3 performs a local stability analysis of the semi-
analytical model. The double-zero eigenvalue and transversality degenerate
Hopf points are found; hence the parameter region in which Hopf bifurcations
occur is identified. Comparisons are made throughout the article between the
semi-analytical results and numerical solutions of the governing pdes.

2 The semi-analytical model

The cubic autocatalytic reaction with linear decay (1) is considered in a one
dimensional reaction-diffusion cell. The governing pdes are

at = axx + βµ− βab2, bt = bxx + βab
2 − βγb

ax = bx = 0 at x = 0 , a = 1 , b = b0 at x = 1 and t = 0 . (2)

The system (2) is in non-dimensional form with the concentrations of the
reactant and autocatalyst given by a and b, respectively. It is an open system;
the reactor has a permeable boundary at x = 1, joined to a reservoir which
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contains a and b at constant concentrations. The boundary condition at
x = 0 is a symmetry condition; an identical reservoir is located at x = −1 .
The system is characterized by four non-dimensional parameters. The ratio
of the autocatalyst and reactant concentrations in the reservoir is b0. The
parameter β is a measure of the importance of the reaction terms, compared
with diffusion, while γ is a measure of the importance of autocatalyst decay,
compared with the cubic reaction. µ is a non-dimensional measure of the
supply of the reactant a, from the decay of the precursor chemical. We
assume that the supply of precursor in the reactor is much greater than the
concentrations of a and b; this is the pooled chemical approximation [7].

The Galerkin method requires that assumptions be made about the spatial
structure of the concentration profiles, which then allows the governing
pdes (2) to be approximated by odes. The method requires that the exact
concentrations be approximated by a series of orthogonal basis functions. The
expansion

a(x, t) = 1+ a1(t) cos(πx/2) + a2(t) cos(3πx/2),

b(x, t) = b0 + b1(t) cos(πx/2) + b2(t) cos(3πx/2), (3)

represents the two term method used here. Expansion (3) satisfies the
boundary conditions in (2), but not the governing pde. We assume this
approximation is sufficient and the bifurcation structure of the approximation
is similarly close to that of the exact solution. The free parameters in (3) are
found by evaluating averaged versions of the governing equations, weighted
by the basis functions. This procedure gives the odes
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The series (3) was truncated after two terms. It is found that a two term
method gives sufficient accuracy without excessive expression swell.

Figure 1 shows steady state bifurcation diagrams. Shown is the steady state
of the autocatalyst concentration at the reactor’s centre (x = 0), b, versus
the bifurcation parameter β. Four of the five bifurcation patterns are shown.
They are (a) the unique pattern, (b) the breaking-wave pattern, (c) the
mushroom pattern, and (d) the isola pattern. The one term and two term
semi-analytical solutions plus the numerical solution of (2) are shown. The
two term solution is very close to the numerical solution, hence it is an
accurate approximation to the full system.

3 Singularity theory and local stability

Singularity theory allows a complete description of all qualitatively distinct
behaviour, which occurs in a particular system of odes. The application
of singularity theory to chemical reactions was described by Balakotaiah
and Luss [9]. They gave conditions for the hysteresis and isola bifurcation
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Figure 1: Steady state bifurcation diagrams of the autocatalyst concentration,
b versus β: (a) the unique pattern, with b0 = 0.05 , γ = 0.018 ; (b) the
breaking-wave pattern with b0 = 0.02 , γ = 0.065 ; (c) the mushroom pattern,
with b0 = 0.03 , γ = 0.069 ; (d) the isola pattern, with b0 = 0.005 , γ = 0.078 .
The one term (black solid lines) and two term (red large dashes) semi-analytical
solutions plus the numerical solution of (2) (blue small dashes) are shown.
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curves and apply the theory to examples involving first order, non-isothermal
reactions in a cstr. Singularity theory is applied to the semi-analytical model
of section 2, which provides a semi-analytical description of the parameter
regions in which each of the bifurcation pattern occurs. The equations
corresponding to the steady state, two term model, have the general form

fi(b0,b1,b2,a1,a2,β,γ,µ) = 0 , i = 1, 4 , (7)

where β is our choice of bifurcation parameter. The hysteresis bifurcation
corresponds to solutions for which a hysteresis loop or fold first occurs in the
bifurcation diagram. This corresponds to the conditions

dβ

db1
=
d2β

db21
= 0 . (8)

The application of the condition (8) to (7) was described by Marchant [8]
and leads to a set of transcendental equations, which represent lines in the
γ-b0 plane. The loci of hysteresis points, when crossed, causes a hysteresis
loop to be created or destroyed in the relevant bifurcation diagram. The sets
of transcendental equations for the hysteresis bifurcation points are found
and solved using Maple. A similar process is followed in the remainder of the
article to convert the mathematical conditions for the isola bifurcation curve,
the isola cusp point and the double-zero eigenvalue (dze) and transversally
Hopf degeneracies into sets of transcendental equations, which are also solved
numerically. The isola bifurcation points are defined by

dβ

db1
=
dγ

dβ
= 0 . (9)

Again, these conditions represent lines in the γ-b0 plane which, when crossed,
cause an isola to be created or destroyed in the relevant bifurcation diagram;
Marchant [8] gave further details.

Now consider the effect of varying the precursor chemical, via the parameter µ,
on the location of the bifurcation patterns. Figure 2 shows the division of the
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Figure 2: Division of the γ-b0 plane into regions corresponding to the different
bifurcation diagrams: (a) µ = 0 , (b) µ = 0.001 , (c) µ = 0.01 , (d) µ = 0.03 ,
(e) µ = 0.04 and (f) µ = 0.1 . The isola curves (red solid lines) and the cusp
curves (blue small dashes) are shown.
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γ-b0 plane into regions corresponding to the different bifurcation diagrams.
When µ = 0 there are four regions in the plane, µ = 0.001 has eight regions,
µ = 0.01 has ten regions, µ = 0.03 has five regions, µ = 0.04 has five
regions, and µ = 0.1 has two regions. When µ = 0 there are four kinds of
steady state bifurcation diagrams, which occur in the four different regions
of Figure 2(a): they are the unique, breaking-wave, mushroom and the isola
pattern. For large µ only the unique and the breaking wave pattern occur, see
Figure 2(f). For intermediate values of µ the division of the parameter space
is very complicated; many additional regions occur and particular bifurcation
patterns can occur in more than one region. The simplicity of the parameter
space division for large µ is due to the disappearance of the isola curve when
µ ≈ 0.05 . The cusp curve remains which divides the plane into two regions.

Hopf bifurcations and stable oscillatory solutions occur for the system (1), both
in the cstr and the reaction-diffusion cell. The theory of Hopf bifurcations can
be found in standard texts on bifurcation theory and dynamical systems such
as those by Guckenheimer and Holmes [10] or Golubitsky and Schaeffer [11].
To determine the parameter region in which Hopf bifurcations occur, the
points for which the bifurcation is degenerate must be found. The degenerate
Hopf points are defined by

dze : fi = tr J = det J = 0 , h2 : f = tr J =
d tr J

dβ
=
dfi

dβ
= 0 , i = 1, 2 .

(10)
For the two term semi-analytical model, there are a set of four ordinary
differential equations (5). The eigenvalues of the Jacobian matrix are described
by the quartic equation, λ4 + α1λ

3 + α2λ
2 + α3λ+ α4 = 0 . Hopf bifurcations

occur for this system when one pair of eigenvalues is purely imaginary, which
implies q = α4α

2
1 + α

2
3 − α1α2α3 = 0 . The degenerate Hopf points are

dze : fi = α3 = α4 = 0 , h2 : fi = q =
dq

dβ
=
dfi

dβ
= 0 , i = 1, 4 . (11)

By solving the sets of transcendental equations associated with the dze and
h2 conditions, curves in the γ-b0 plane are obtained.
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Figure 3: Hopf curve for µ = 0 (black solid line), µ = 0.01 (red dot-dashes)
and µ = 0.05 (blue dashes)

Figure 3 shows the degenerate Hopf points, in the γ-b0 plane, for µ = 0 ,
0.01 and 0.05. For non-zero µ the region of parameter space moves in a
complicated manner; for non-zero µ Hopf bifurcations are possible at large
values of b0 and γ, than for the case with no precursor. µ appears to be a
useful control parameter, to stabilize or destabilize, the autocatalytic reaction.

Figure 4 shows the limit cycle curve, a versus b when µ = 0.001 , β = 192.3 ,
b0 = 0.08 and γ = 0.05 . The one term, two term and the numerical solution
of the pdes are shown. The two term semi-analytical approximation is fairly
close to the numerical solution of the pde.
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Figure 4: The limit cycle when µ = 0.001 , β = 192.3 , b0 = 0.08 and
γ = 0.05 , The one term (black solid line) and two term (red large dashes)
semi-analytical solutions and the numerical solution of (2) (blue small dashes)
are shown.

4 Conclusion

Semi-analytical solutions were developed to show the effect of a precursor
chemical on the cubic autocatalytic reaction-diffusion cell. The effect of
varying µ, on the distribution of bifurcation patterns, and the occurrence
of oscillatory solutions is dramatic. The semi-analytical method proves to
be a useful, accurate and robust technique for analyzing the dynamics of
reaction-diffusion cells.
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