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Existence and algorithm of solutions for a new
system of generalized variational inclusions

involving relaxed Lipschitz mappings
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Abstract

We consider a new system for generalized variational inclusions in
Hilbert spaces and define an iterative algorithm for finding the ap-
proximate solutions of this class of system of variational inclusions.
We also establish that the approximate solutions obtained by our al-
gorithm converge to the exact solution of new system of generalized
variational inclusions. One can explore the role of our system of gen-
eralized variational inclusions for solving various known equilibrium
problem and other related problems.
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1 Introduction

Because of applications in mechanics, physics, optimization and control, non-
linear programming, economics and engineering sciences, various variational
inclusions have been intensively studied in recent years by Agarwal [1, 2],
Ahmad et al. [5], Ding et al. [7] and Lee et al. [8]. Ansari and Yao [4]
studied a system of variational inequalities using a fixed point theorem.
Verma [10, 11, 12] studied some systems of variational inequalities with single
valued mappings and suggested some iterative algorithms to compute approx-
imate solutions of these systems in Hilbert spaces. Agarwal [3] studied sensi-
tivity analysis for a system of generalized nonlinear mixed quasi-variational
inclusions with single-valued mappings. As an application of system of vari-
ational inclusions, Pang [9] showed that the traffic equilibrium problem, the
Nash equilibrium problem, and the general equilibrium problem, can be mod-
eled as a system of variational inequalities and inclusions.

Inspired and motivated by recent research work in this field, we introduce
a new system of generalized variational inclusions and define an iterative
algorithm. By the definition of relaxed Lipschitz mapping, we prove that
the approximate solutions obtained by the iterative algorithm converge to
the exact solution of our system of generalized variational inclusions. Our
results improve and generalize many known corresponding results and can
be used to solve different kinds of variational inequalities (inclusions), quasi-
variational inequalities (inclusions), complementarity problems, equilibrium
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problems and other related problems.

2 Preliminaries

Throughout, let H be a real Hilbert space endowed with the inner prod-
uct 〈·, ·〉 and norm ‖ · ‖, respectively. Let M,N : H → 2H be two maximal
monotone mappings and A, S,B, T, g : H → H be nonlinear single valued
mappings. We consider the problem of finding x, y ∈ H such that

0 ∈ g(x)− g(y) + ρ(A(g(y))− S(y)) + ρM(g(x)) ,

0 ∈ g(y)− g(x) + γ(B(g(x))− T (x)) + γN(g(y)) ,

}
(1)

which is called the system of generalized variational inclusions, where ρ > 0
and γ > 0 are two constants.

If g = I , the identity mapping, then the problem (1) reduces to the
problem of finding x, y ∈ H such that

0 ∈ x− y + ρ(A(y)− S(y)) + ρM(x) ,

0 ∈ y − x+ γ(B(x)− T (x)) + γN(y) .

}
(2)

A problem similar to (2) is considered by Agarwal et al. [3] and they discussed
the sensitivity analysis of such a problem.

Definition 1 ([6]) If M : H → 2H is a maximal monotone mapping, then
for any fixed ρ > 0 , the mapping JρM : H → H defined by

JρM(x) = (I + ρM)−1(x) , for all x ∈ H ,

is said to be the resolvent operator of index ρ of M , where I is the identity
mapping on H. Furthermore, the resolvent operator JρM is single valued and
nonexpansive, that is,

‖JρM(x)− JρM(y)‖ ≤ ‖x− y‖ , for all x, y ∈ H .
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3 Iterative algorithm

First, we give the following lemma, the proof of which is a direct consequence
of Definition 1 and hence is omitted.

Lemma 2 x, y ∈ H is the solution of system of generalized variational in-
clusions (1) if and only if it satisfies

g(x) = JρM [g(y)− ρ(A(g(y))− S(y))] , ρ > 0 , (3)

where
g(y) = JγN [g(x)− γ(B(g(x))− T (x))] , γ > 0 . (4)

The preceding lemma allows us to suggest the following iterative algo-
rithm for system (1).

Algorithm 1

Given x0 ∈ H , compute {xn}, {yn} by the rule

xn+1 = xn − g(xn) + JρM [g(yn)− ρ(A(g(yn))− S(yn))] , ρ > 0 , (5)

where

g(yn) = JγN [g(xn)− γ(B(g(xn))− T (xn))] , γ > 0 , n = 0, 1, 2, . . . . (6)

4 Convergence theorem

First, recall the following definitions.
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Definition 3 A mapping g : H → H is said to be

1. Strongly monotone, if there exists a constant δ > 0 such that

〈g(x)− g(y), x− y〉 ≥ δ‖x− y‖2 , for all x, y ∈ H ;

2. Lipschitz continuous, if there exists a constant λg > 0 such that

‖g(x)− g(y)‖ ≤ λg‖x− y‖ , for all x, y ∈ H .

Definition 4 A mapping S : H → H is said to be relaxed Lipschitz, if for a
given k ≤ 0 ,

〈S(x)− S(y), x− y〉 ≤ k‖x− y‖2 , for all x, y ∈ H .

We apply Algorithm 1 to prove the following convergence theorem.

Theorem 5 Let H be a real Hilbert space. Let M,N : H → 2H be two
maximal monotone mappings, g : H → H be strongly monotone with con-
stant δ and Lipschitz continuous with constant λg. Let A, S,B, T : H → H
be Lipschitz continuous mappings with Lipschitz constants λA, λS, λB and
λT , respectively and let S be relaxed Lipschitz with constant k. If there exists
constants ρ > 0 and γ > 0 such that∣∣∣∣ρ+

(C − θ1)λAλg − k
λ2
S − λ2

Aλ
2
g

∣∣∣∣
<

√
[(C − θ1)λAλg − k]2 − (λ2

S − λ2
Aλ

2
g)[1− (C − θ1)2]

λ2
S − λ2

Aλ
2
g

, (7)

where

((C − θ1)λAλg − k)2 > (λ2
S − λ2

Aλ
2
g)(1− (C − θ1)

2) and λS > λAλg ,

where C = δ(1− θ1)/θ3 , θ1 =
√

1− 2δ + λ2
g , θ3 = [λg + γλBλg + γλT ] , then

the iterative sequences {xn}, {yn} generated by Algorithm 1 strongly converge
to x, y, respectively, in H, and x, y ∈ H is a solution of system of generalized
variational inclusions (1).
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Proof: From Algorithm 1 and using the nonexpansiveness of resolvent op-
erator, we have

‖xn+1 − xn‖ = ‖xn − g(xn) + JρM [g(yn)− ρ(A(g(yn))− S(yn)]

− [xn−1 − g(xn−1) + JρM [g(yn−1)− ρ(A(g(yn−1)− S(yn−1)]]‖
≤ ‖xn − xn−1 − (g(xn)− g(xn−1))‖+ ‖g(yn)− g(yn−1)− ρ(A(g(yn)

− A(g(yn−1))) + ρ(S(yn)− S(yn−1))‖
≤ ‖xn − xn−1 − (g(xn)− g(xn−1))‖+ ‖yn − yn−1 − (g(yn)− g(yn−1))‖

+ ‖yn − yn−1 + ρ(S(yn)− S(yn−1))‖+ ρ‖A(g(yn))− A(g(yn−1))‖ .(8)

By Lipschitz continuity and strong monotonicity of g, we obtain

‖xn − xn−1 − (g(xn)− g(xn−1))‖2 ≤ (1− 2δ + λ2
g)‖xn − xn−1‖2 , (9)

and

‖yn − yn−1 − (g(yn)− g(yn−1))‖2 ≤ (1− 2δ + λ2
g)‖yn − yn−1‖2 . (10)

Since S is Lipschitz continuous and relaxed Lipschitz, we have

‖yn − yn−1 + ρ(S(yn)− S(yn−1))‖2

= ‖yn − yn−1‖2 + 2ρ〈S(yn)− S(yn−1), yn − yn−1〉
+ ρ2‖S(yn)− S(yn−1)‖2

≤ ‖yn − yn−1‖2 + 2ρk‖yn − yn−1‖2 + ρ2λ2
S‖yn − yn−1‖2

= (1− 2ρk + ρ2λ2
S)‖yn − yn−1‖2 . (11)

By the Lipschitz continuity of A and g we have

‖A(g(yn))− A(g(yn−1))‖ ≤ λAλg‖yn − yn−1‖ , (12)

using (9)–(12), (8) becomes

‖xn+1 − xn‖ ≤
√

1− 2δ + λ2
g ‖xn − xn−1‖
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+ (
√

1− 2δ + λ2
g +

√
1− 2ρk + ρ2λ2

S + ρλAλg) ‖yn − yn−1‖ . (13)

Now, we have

‖g(yn)−g(yn−1)‖ ‖yn−yn−1‖ ≥ 〈g(yn)−g(yn−1), yn−yn−1〉 ≥ δ‖yn−yn−1‖2 ,

which implies

‖yn − yn−1‖ ≤
1

δ
‖g(yn)− g(yn−1)‖

≤ 1

δ
‖JγN [g(xn)− γ(B(g(xn))− T (xn))]− JγN [g(xn−1)

− γ(B(g(xn−1))− T (xn−1))]‖

≤ 1

δ
‖g(xn)− g(xn−1)− γ(B(g(xn))− (B(g(xn−1)))

+ γ(T (xn)− T (xn−1))‖

≤ 1

δ
[‖g(xn)− g(xn−1)‖+ γ‖(B(g(xn))− (B(g(xn−1))‖

+ γ‖T (xn)− T (xn−1)‖]

≤ 1

δ
[λg + γλBλg + γλT ]‖xn − xn−1‖ . (14)

Combining (13) and (14), we have

‖xn+1 − xn‖ ≤ (θ1 + (θ1 + θ2)
1

δ
θ3) ‖xn − xn−1‖ , (15)

where θ1 =
√

1− 2δ + λ2
g , θ2 =

√
1− 2ρk + ρ2λ2

s + ρλAλg , θ3 = [λg +
γλBλg + γλT ] .

Hence, we have

‖xn+1 − xn‖ ≤ θ‖xn − xn−1‖ , (16)

where θ = θ1 + (θ1 + θ2)θ3/δ . By Condition (7), we have θ < 1 .
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Inequality (16) implies that {xn} is a Cauchy sequence. Also, (14) implies
that {yn} is a Cauchy sequence in H. Hence, there exist x, y ∈ H such that
xn → x and yn → y . Since g, A, S,B, T, JρM and JγN are continuous, then it
follows from Algorithm 1 that x, y ∈ H satisfy (3), (4) and thus by Lemma 2,
it follows that x, y ∈ H is a solution of system of generalized variational
inclusions (1). This completes the proof. ♠
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