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Two continuous methods for determining a
minimal risk path through a minefield
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Abstract

Two formulations for determining the minimal risk path of a ve-
hicle through a minefield are considered and compared. Firstly, by
following a calculus of variations argument a system of four coupled
odes are derived. Secondly, the trajectory of the vehicle is approxi-
mated by a discrete (but large) system of coupled springs and masses
resulting in a large but well behaved system of odes to solve. Nu-
merical solutions to these systems are investigated. The strengths and
weaknesses of each approach are discussed.
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1 Introduction

The determination of an optimal path trajectory is a fundamental require-
ment for land, naval, air and space vehicles in both military and civilian
applications [5]. Frequently, this optimal trajectory also has constraints such
as fuel usage, travel time and travel distance associated with it. This opti-
mal trajectory arises in a number of settings such as minimising risk when
travelling through a minefield, minimising detection from enemy radar or
minimising aircraft collision in an air traffic control environment [5, 9]. Each
application would seek a different balance between the risk and the con-
straints.

This article investigates the determination of optimal path routes for a
single vehicle traversing a minefield from its base to its mission objective.
This could be a land vehicle (or even a foot soldier) traversing a landmine
field or a ship traversing a region with sea mines. We make some assumptions
about the mines and the vehicle dynamics to make the problem amenable to
a general solution technique. The locations of the mines are considered to be
known. The risk from each mine is assumed to be proportional to the recip-
rocal of the square of distance from the mine to the current position along
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the trajectory. The vehicle is assumed to have the same risk in all directions
so that the shape of the vehicle is not important. The mines and vehicle
are assumed to be in the same horizontal plane (sea surface, land surface)
so that the problem is two dimensional. This latter criteria is easily relaxed
for scenarios such as submerged mines or submarines by including a vertical
component in the risk formula. For simplicity it is assumed that the vehicle
moves at a constant speed. Any time or fuel constraints can then be ex-
pressed as a constraint on the length of the optimal trajectory. It is assumed
that the vehicle can respond to any direction change instantaneously.

We study this problem in a continuous variable setting so we allow the
course of the vehicle to be continuously changing in order to minimise the
risk. This is in contrast to previous work in this area [2, 3, 5, 8, 10], who
have all treated the trajectory as a series of discrete steps and used discrete
optimisation techniques on this approximate problem. A serious drawback of
such a discretisation approach is the determination of suboptimal paths due
to the gridding scheme incorporated in such methods [7]. One way to improve
this is to increase the number of discretisation points, but this is often not
feasible (particularly for on-board systems) due to high computational costs.

2 Calculus of variations approach

2.1 Formulation

Consider the case of N radars at positions (x, y) = (ai, bi) for i = 1, . . . , N .
The vehicle starts at point A = (x1, y1) and moves to point B = (x2, y2) with
constant speed. Let the trajectory be parametrised by the variable s. The
length of the trajectory, `, is a constraint on the problem as frequently one
wishes to traverse the minefield in a prescribed time and/or distance.

The distance from any point (x, y) on the trajectory to the ith radar is
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denoted by di. The risk from each mine is proportional to 1/d2
i so the total

risk travelling the trajectory is

R =

∫ B

A

N∑
i=1

σi

d2
i

ds , (1)

where σi is the risk proportionality constant for each mine thus allowing
for mines with differing strengths. The risk minimisation subject to the
length and end point constraints can be formulated as a calculus of variations
problem the details of which are given by Zabarankin et al. [10, Appendix].
The resulting equations are

Lx −
d

ds
(ẋL) = λẍ , (2a)

Ly −
d

ds
(ẏL) = λÿ , (2b)

where over-dots are s-derivatives, the risk functional is defined as

L =
N∑

i=1

σi

d2
i

, (3)

and λ is a constant of integration that needs to be found. Rearranging
equations (2a) and (2b) and substituting

z1 = x , z2 = ẋ , z3 = y , z4 = ẏ , (4)

gives a system of four first order equations

ż1 = z2 , (5a)

ż2 =
1

λ+ L

(
Lz1 − z2

dL

ds

)
, (5b)

ż3 = z4 , (5c)

ż4 =
1

λ+ L

(
Lz3 − z4

dL

ds

)
. (5d)
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Figure 1: Two optimal routes for the one mine case. Solid line is for
` = 2.5 and dashed line is for ` = 4.2. The risk in traversing the routes are
R = 4.1283 and R = 3.2208 respectively.

Since s is an arc length there is also the additional constraint that

ż1
2 + ż3

2 = 1 . (6)

These equations need to be solved for the four variables z1, z2, z3, z4 and the
integration constant λ subject to the end points (z1(0), z3(0)) and (z1(`), z3(`))
being known.

2.2 Numerical solution

The system of equations is solved using the matlabTM [4] routine bvp4c
and independently checked using Fortran and the nag [6] routine d02hbf.
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Figure 2: Two mine example showing three different optimal routes.

In general between 400 and 2000 points along the trajectory were needed for
accurate results. Figure 1 shows trajectories for two different path lengths
(` = 2.5, 4.2) when the starting point is taken as (−0.25, 0.25) the end point
(1.75, 0.25) and there is a single mine located at (0, 0). This configuration was
chosen as it is the same configuration used for a related radar problem using
a discrete method by Zabarankin et al. [10] and is therefore a check on the
numerical method. The risk for each of the paths shown is R = 4.1283 and
R = 3.2208 respectively. The optimal path in each case is, as expected, to be
as far from the mine as possible while still satisfying the length constraint.

It is possible to find solutions for multiple mines. Figure 2 is an example of
three optimal routes when there are two mines located at (0, 0) and (1.0, 0.5).
There is now the possibility of having “inner” trajectories (going between the
mines) and “outer” trajectories. In this example the “inner” route with a
length ` = 2.52 has a lower risk (R = 11.0861) than an “outer” route of
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Figure 3: Risk versus path length for the two mine example showing the
change over from ‘inner” to “outer” trajectory at approximately ` = 2.6.

the same length (R = 11.7214). There is now a distinct change in the route
choice as the path length is increased. For short paths the “inner” route is
the optimal choice but as the path length is increased and the risk reduced
at some point the “outer” route becomes the preferred choice. This can be
seen in Figure 3 which is a plot of the risk versus the path length for this two
mine example. As the path length passes through approximately ` = 2.6 it is
a lower risk to switch from the “inner” trajectory to the “outer” trajectory.

The solution method was found to be very sensitive to the initial trajec-
tory and the location of the mines. To overcome the sensitivity to initial
conditions it was necessary to initially have the mines at a great distance
from the start and finish points and to iterate the process as the mines were
slowly moved to their actual position. At each step of the iteration pro-



3 Springs and masses approach C300

cess we used the previous optimal trajectory as the new initial trajectory.
This method has very slow convergence to the optimal solution and does not
handle the sudden introduction of new mines well. These factors combine
to make this method to be unsuitable for real time application of finding
the optimal route through a minefield. An alternative method is therefore
needed for onboard mine avoidance systems.

3 Springs and masses approach

3.1 Formulation

Due to the computational difficulties in obtaining solutions to the calculus of
variations approach discussed in the last section we consider an approximate
method that is faster and more robust. This method consists of distributing
masses along the path and then evolving the position of these masses (and
hence the trajectory) to minimise the risk. This work is based upon that of
Bortoff [1] who studied the minimisation of risk of detection of an unmanned
air vehicle traversing a region under enemy radar surveillance. The mines are
assumed to repel the masses and there are springs connecting the masses that
act to minimise the path length. This is shown schematically in Figure 4. By
determining the forces acting on the masses a minimum energy solution can
be found that is a balance between the mine repulsion and spring contraction.

Let there be M masses distributed along the path at the points (x̄j, ȳj)
for j = 1, . . . ,M of mass mj. The objective is then to find the position of
these masses. Assume that the mines repel the masses with the repulsion
proportional to the reciprocal of the square of the distance from a mine to a
mass. The repulsion force acting on mass j from all the mines is

(RF)j =
N∑

i=1

Qi

(dji)2
nji , (7)
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Figure 4: Schematic diagram showing the mines repelling the masses and
the springs reducing the distance between the masses.

where Qi is the strength of mine i and nji is the normal direction from mine i
to mass j. For brevity consider only the x-component of the forces (similar
equations will hold for the y-component). The x-component of the repulsive
force is then

(RFx)j =
N∑

i=1

Qi

(dji)3
(x̄j − ai) , (8)

where ai is the x-component of the position of mine i. The x-component of
the attractive forces acting on mass j is due to its neighbours and is

(AFx)j = k(x̄j+1 − x̄j)− k(x̄j − x̄j−1) , (9)

where k is the spring constant for the springs. There is also a spring damping
force with an x-component

(DFx)j = b( ˙̄xj+1 − ˙̄xj)− b( ˙̄xj − ˙̄xj−1) , (10)

where b is the damping coefficient for the springs.

Combining all the forces acting on each mass we obtain an ode for the
movement of the x-component of mass j as

mj ¨̄xj =
N∑

i=1

Q(x̄j − ai)

d3
ji

+ k(x̄j+1 − x̄j)− k(x̄j − x̄j−1) +
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+ b( ˙̄xj+1 − ˙̄xj)− b( ˙̄xj − ˙̄xj−1) for j = 1, . . . ,M .

Similarly we derive an ode for the y coordinate mj ¨̄yj. Together these form
a system of 4M first order odes that govern the movement of the masses
toward an optimum trajectory.

3.2 Numerical solution

From an initial mass distribution along a path integrate the system of odes
forward in time until a local minimum energy state (steady state) is obtained.
This then represents the balance between the mine repulsive and spring at-
tractive forces. By adjusting the repulsion coefficients, Qi, and the spring
constants, k, one determines an optimal route for a given path length. Since
this method only requires the integration of a system of initial value odes
forward in time to a steady state, it is fast and robust. Even for large num-
bers of masses, which are necessary to obtain a smooth continuous trajectory,
this method is suitable for real time calculations.

Figure 5 shows an example of the optimal (minimum risk) route through
a large minefield where in this example the mines are all taken to have the
same repulsion strength, Qi = Q for i = 1, . . . , N . The optimal route is
found by adjusting the ratio of the mine repulsion to the spring constant
until a minimal risk route is found. In this case, minimal risk occurs when
Q/k = 0.8 for a path length of ` = 2.0931 and a risk of R = 131.89 using
M = 50 masses along the route.

Figure 5 hints at a potential problem with this method. As a result of
the mines repelling the masses they are distributed to areas of low risk and
away from areas of high risk such as when the route has been forced by the
length constraint to pass near a mine. This tendency reduces the accuracy of
the method. It can be overcome by increasing the number of masses used or
by distributing the masses so that areas of high risk have a higher density of
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Figure 5: An example of the optimal route through a minefield with mul-
tiple mines present using the springs and masses method.

masses. The latter of these two is preferred if computational speed is desired
for real time application.

4 Conclusion

Two methods have been presented for the calculation of a minimal risk path
through a minefield in a continuous setting. These methods differ from the
classic discrete formulations of these problems in that the discretisation is
along the trajectory and not over the whole region. In general this makes
these continuous methods more efficient than the classic whole of region
discretisation methods.

The convergence of the solutions obtained via the calculus of variations
method presented here was found to be very slow and so not suitable for
real time implementation. In contrast, the springs and masses approach is
robust, fast and efficient. However, the solution obtained using the springs
and masses method is only an approximation to the actual problem.
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In the springs and masses method the path length is an outcome not an
input; in contrast in the calculus of variations method it is one of the inputs.
To obtain a given path length using the springs and masses method the ratio
of the mine repulsion to the spring constant must be iterated upon. Because
this method is so much faster than the calculus of variations method this is
not an impediment.

In real life scenarios the locations of all mines are not necessarily known.
Often there are what are referred to as “pop up” threats [1]. These are mines
that are only discovered once the vehicle has begun traversing the route
through the minefield. The springs and masses method is able to handle
these “pop up” threats much more easily than the calculus of variations
method since the springs and masses method is a “local” method in that
each mass is affected more by mines near it rather than those far away. Due
to the “local” adaptability of the springs and masses method the route can
be varied in real time.
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