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Abstract

This is a review of thin-body and slender-body theories, with in-
dications of some new applications. Topics discussed include bodies
with near-constant surface pressure, subsonic and supersonic aerody-
namics, ship hydrodynamics, slender bodies in Stokes flow, slender
footings in elastic media, and slender moonpools. Mathematical fea-
tures of the thin and slender-body approximations are also discussed,
especially non-local convolution terms modelling three-dimensionality
in the otherwise two-dimensional near field, end effects, and the role
of the logarithm of the slenderness ratio.

This review was presented by the author as the IMA Lighthill
Memorial Lecture at the British Applied Mathematics Colloquium
(BAMC) of 2004. Its posthumous publication now is with the consent
of the IMA/BAMC.
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1 Introduction

This paper mainly concerns fluids streaming past impermeable elongated
bodies. This topic has always been one of the most important in fluid me-
chanics, and one to which Sir James Lighthill contributed substantially, from
his earliest research days in the 1940s. However, there are also potential or
actual applications in other areas including solid mechanics.

Within fluid mechanics, most of this paper concerns irrotational potential
flow of an inviscid incompressible fluid, but again there are many other fluid-
mechanical applications, e.g. to subsonic and supersonic compressible flows,
and to low Reynolds number viscous flows. In all cases, the reference frame
adopted is moving with the body and, in this reference frame, the flow is
steady and streaming from left to right with unit velocity. The potential
flow demands solution of an exterior boundary-value problem for Laplace’s
equation, with a Neumann boundary condition on the body surface.

Even when there is just one such boundary surface, solution of this type
of boundary-value problem for geometrically complex bodies presented major
computational difficulties until relatively late in the 20th century, and hence
there was often a resort to approximations based on simplifying geometrical
features of the body. Fortunately, in many real applications there are indeed
such features present, namely the body is elongated in the flow direction, or
“streamlined”. The now-common English word “streamlined” has a technical
origin involving the body geometry conforming to flow streamlines, and this
tells us that there is no element of luck about the presence of geometrical sim-
plifying features! Streamlined bodies are usually either thin (approximated
by a plane) or slender (approximated by a line).
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Nowadays, the tools of computational fluid dynamics are such that this
type of boundary-value problem is almost trivially solvable, and one might
question the need to use such approximations. However, there are often
other reasons for their retention. One such reason is that there may be other
boundaries – other bodies, or more importantly other boundaries such as free
surfaces. The problem of flow past a ship or submarine is one such example,
and the nonlinear boundary conditions on a free-surface that is not known
in advance present serious difficulties to any computational procedure, even
with 21st century computers.

Just to set that scene, Figure 1 shows some ship waves computed in a
few minutes of 2GHz PC time using a thin-ship approximation [21]. These
computations are for a vessel which approximates in size, shape and speed
the ship in the photograph of Figure 2. Capturing the full complexity of a
ship-wave pattern is a challenge even after the thin-ship approximation has
been made — without that approximation, compromises have to be made
that may be unacceptable in some applications, e.g. to detection.

We shall return to problems involving free surfaces and other generalisa-
tions later, but first let us discuss the most straightforward flow situation,
which requires solution of a Neumann problem for Laplace’s equation exterior
to a single body. For definiteness we shall call this the “prototype” problem.

2 Interior sources

Among the many ways to solve Neumann boundary-value problems, one of
the oldest is to place singularities inside the body, whose strength is to be
determined. We shall only be concerned with non-lifting bodies here, so
these singularities can be assumed to be sources. This concept generalises
the Rankine body, which is generated by one source and one equal sink. Good
numerical methods can then be devised both in two and three dimensions
for arbitrary bodies, with a careful placement of many sources. The source
distribution may be discrete or continuous; let us here assume the latter. In
the most general case, it is best that the sources lie not too far inside the
body, and, in particular, if they lie on the (inside of the) body surface itself,
such methods reduce to “boundary integral equation” or “panel” methods.

However, there is a significant class of smooth and not-too-fat bodies for
which this principle of closeness to the body surface can be violated without
cost. For most laterally symmetric bodies the sources can be placed on the
plane of symmetry, and for most bodies of revolution they can be placed on
the axis.
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Figure 1: Computed ship waves.

Figure 2: Actual ship waves.
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Thus for a body alone in two dimensions we may suggest

φ(x, y) =
1

2π

∫

m(ξ) log
√

(x− ξ)2 + y2 dξ, (1)

and for a body of revolution (with r as a polar coordinate normal to the axis)

φ(x, r) = − 1

4π

∫

m(ξ)
√

(x− ξ)2 + r2
dξ. (2)

The integrals in each case take place over a suitable range of ξ values inside
the body. For finite bodies, we shall often take this range to be (−1, 1), but
in principle (−∞,∞) can be assumed, with truncation to a finite range if
m(ξ) vanishes outside that range. Here φ is the potential for the disturbance
to a unit-magnitude x-directed stream due to the body, such that the total
fluid velocity is q = ∇(x + φ). The only remaining requirement is that
the Neumann boundary condition q.n = 0 is satisfied on the body surface,
leading to an integral equation for the source-strength function m(ξ).

For example, in the 3D case on (−1, 1), the linearly-varying function

m(ξ) = −2πǫ2 ξ (3)

generates the exact solution for flow over a prolate spheroid which extends
somewhat beyond the sources, to |x| = ζ with ζ > 1, and has a maximum
radius r =

√

ζ2 − 1, where ǫ2 = − [Q′

1
(ζ)]−1, with

Q1(ζ) =
1

2
ζ log

ζ + 1

ζ − 1
− 1 (4)

a Legendre function of the second kind. We shall further explore this exact
solution later. For small ǫ we have ζ ≈ 1+ ǫ2/2, and the spheroid is slender,
with maximum radius/half-length approximately equal to ǫ.

One primitive but often quite successful version of slender-body theory
simply says the following. When the body is expanding its cross-section
area, each unit-length section occupies an extra volume equal to the rate of
increase in section area, and that is volume lost to the stream. To conserve
mass, there must therefore be an outward flux or source strength equal to
the stream magnitude U times that volume. Hence m(ξ) is approximately
equal to U times the x-wise rate of change of body section area at station
x = ξ. Thus, for a body of revolution r = f(x) with section area πf 2 in a
unit stream U = 1, we have

m(ξ) = 2πf(ξ)f ′(ξ). (5)
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In 2D the section area is replaced by body thickness, so for a symmetric 2D
body y = ±f(x) with thickness 2f in a unit stream we have

m(ξ) = 2f ′(ξ). (6)

Once m(ξ) is so specified, in principle there is no need for further approx-
imation, and the flow is fully determined. However, let us explore systematic
theories in which not only are the source strengths correctly determined by
the above formula to a leading-order approximation, but further consistent
approximations are made in determining flow quantities of interest such as
the pressure distribution on the body.

3 Thin symmetric bodies in 2D

A consistent thin-body theory for the symmetric body y = ±f(x) demands
that we consider the limit as f(x) → 0, in which the body shrinks to the
plane y = 0. The limiting form of the Neumann boundary condition is then

φy(x, 0±) = ±f ′(x) (7)

on the top and bottom sides of the limiting plane boundary y = 0. This
boundary condition is satisfied exactly by the expression (1), providing m(ξ)
is given by (6).

The main output is then the pressure distribution (excess over atmo-
spheric) on the body, which is given (neglecting second-order terms) by
Bernoulli’s equation as

p(x) = −φx(x, 0±). (8)

Both the fluid density and the stream velocity have been normalised to unity;
the non-dimensional quantity p(x) used here is then half of the usual pressure
coefficient. Note that not only have we neglected the square of the lateral
velocity φy, but also we have consistently evaluated the pressure on the lim-
iting plane boundary y = 0± rather than the actual boundary y = ±f . Then
using (1) and (6) we find that the pressure is the Hilbert transform of the
body slope, namely

p(x) = −1

π

∫

f ′(ξ)

x− ξ
dξ. (9)

This is a “small” pressure disturbance, of the same (first-order) magnitude
as the body thickness f . The relationship (9) between shape f and pressure
p is linear, and if f = O(ǫ) for some small parameter ǫ, then also p = O(ǫ),
with error O(ǫ2).
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For example, on (−1, 1) the elliptic cylinder

f(x) = ǫ
√
1− x2 (10)

gives, according to (9), the constant negative pressure p = −ǫ. This is clearly
not a good approximation near the ends of the body (where we should find
stagnation pressure p = +1/2), a matter to which we shall return later.

There are many properties of Hilbert transforms that can be used to
generate interesting results for pressures on thin bodies. For example, since
an analytic inverse Hilbert transform is known, we can immediately write
down the body slope generating a given pressure distribution. On the full
infinite range, we have

f ′(x) =
1

π

∫

∞

−∞

p(ξ)

x− ξ
dξ (11)

and on the finite interval (−1, 1), we have

f ′(x) =
1

π
√
1− x2

∫

1

−1

√

1− ξ2 p(ξ)

x− ξ
dξ (12)

(assuming f = 0 for all |x| ≥ 1).

4 Slender bodies of revolution

Not everything follows as easily for slender bodies as it does for thin bodies!
Essentially this is because the limiting line is a one-dimensional object, and
therefore cannot serve as a boundary for the limiting 3D boundary-value
problem. Instead of letting the body shrink fully down to the limiting line
r = 0, we must instead match with an “inner” flow for small but nonzero r.

We therefore need the behaviour of the potential (2) for small r, namely

φ(x, r) =
m(x)

2π
log r + b(x) +O(mr2 log r), (13)

where

b(x) = − 1

4π

∫

m′(ξ) sgn(x− ξ) log 2|x− ξ| dξ. (14)

The logarithmic part of (13) is easy to understand – a line of 3D sources
behaves near that line as if it was a 2D line source with the local source
strength. However, if the source strength m(x) varies with x, then there will
be non-zero and non-trivial axial (x-wise) fluid motion which is determined
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by the non-local term b(x). Equation (14) applies both to finite and infinitely-
long bodies. If the body is of finite length, e.g. occupies |x| < 1, a careful
integration by parts yields the alternative formula

b(x) = −m(x)

2π
log 2

√
1− x2 +

1

4π

∫

1

−1

m(x)−m(ξ)

|x− ξ| dξ. (15)

Again, substitution of (13) in the approximate Neumann boundary condition
φr = f ′(x) on r = f(x) verifies the slender-body approximation (5) for the
source strength m(x).

Note that m = O(ǫ2) if f = O(ǫ), i.e. if ǫ measures slenderness, and
hence the full disturbance potential given by (2) is also of second order,
with φ = O(ǫ2) . The inner approximation (13) to φ with r = O(ǫ) is
strictly then of order ǫ2 log ǫ. This type of extra “log ǫ” factor is common
in slender-body theory; for some order-of-magnitude estimation purposes it
can be ignored, and we then view the disturbance due to the body as simply
“second order”, even near the body. Similarly, it can be shown that the error
in the slender-body approximation (5) to the source distribution is of order
ǫ4 log ǫ or (loosely) “fourth order”, and the error in the formula (13) for the
disturbance potential near the body is then of order ǫ4 log2 ǫ, again loosely
fourth order. We shall return to matters involving these logarithms later.

Now the Bernoulli equation determines the pressure as

p = −φx −
1

2
φ2

r, (16)

where we have neglected the (fourth-order) term φ2

x, but now (in contrast to
the 2D case) cannot neglect the (second-order) term φ2

r. The whole pressure
is then of second order. Substituting the inner approximation (13) gives, on
the body r = f(x),

p(x) = −[f(x)f ′(x)]′ log f(x)− b′(x)− 1

2
f ′(x)2. (17)

For finite-length bodies on (−1, 1) it is convenient to use (15), with the
definitions A(x) = f(x)f ′(x) and

B(x) =
1

2

∫

1

−1

A(x)−A(ξ)

|x− ξ| dξ, (18)

to write the pressure as

p(x) = −A′(x) log
f(x)

2
√
1− x2

− B′(x)− xA(x)

1− x2
− 1

2
f ′(x)2. (19)
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This expression is in some ways equivalent to the Hilbert transform (9) for the
corresponding thin-body pressure, and indeed the (linear) integral transform
(18) connecting A(x) and B(x) plays a similar non-local role. However, now
there are significant local terms as well, and the full relationship (19) between
body geometry and pressure distribution is not linear.

The approximation (19) clearly breaks down at the ends x = ±1, where it
predicts a (positive) infinite pressure. For most finite bodies, the ends will be
stagnation points where we expect p = 1/2. It should of course be noted that
this is not as dramatic a failure as appears at first sight. After all, what (19)
is saying is that the pressure on a slender body is small, of second order in
ǫ. On such a scale, the finite stagnation pressure appears effectively infinite.

However, both in 2D and 3D it is also possible to construct uniformly
valid approximations, and Lighthill (1949) was one of the first to do this in
2D. For slender bodies of revolution r = f(x) this simply involves dividing
the pressure given by (19) by

1 +

(

xf(x)

1− x2

)2

, (20)

which is such as to guarantee stagnation pressure p = 1/2 at x = ±1, but
makes a negligible O(ǫ4 log ǫ) change if |x| is not near 1.

5 Exact pressure on ellipses and spheroids

If either the elliptic cylinder

y = ±ǫ
√
1− x2 (21)

or the spheroid
r = ǫ

√
1− x2 (22)

is placed in a unit-magnitude stream, the velocity magnitude on its surface
is given (exactly) by

q =
1 + λ

√

1 + ǫ2x2/(1− x2)
, (23)

where 1 + λ is the (maximum) velocity, namely that at x = 0. This result
follows from the exact solutions [4], or simply by careful tangential differenti-
ation of the velocity potential φ, which is (exactly) equal to (1+λ)x on these
bodies [23]. The corresponding (non-dimensional) pressure disturbance p is
(exactly)

p(x) =
1

2
− 1

2
q2
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p

x

Figure 3: Exact non-dimensional pressure p(x) on ellipse and spheroid, each
with thickness/length ǫ = 0.1.

=
−λ− 1

2
λ2 + 1

2
ǫ2x2/(1− x2)

1 + ǫ2x2/(1− x2)
. (24)

Although the same formula (24) yields the surface pressure on ellipses in
2D and spheroids in 3D, the maximum velocity 1 + λ takes different values
in each case. For ellipses of width/length ratio ǫ in 2D flow we have simply

λ = ǫ . (25)

The exact result in 3D for spheroids of diameter/length ratio ǫ is a little more
complicated, namely

λ = − Q1(ζ)

ζQ′

1
(ζ)

, (26)

where ζ = (1− ǫ2)−1/2 and Q1(ζ) is the Legendre function defined in (4).
Figure 3 shows example computations of p(x) in x ≥ 0, for ǫ = 0.1.

Although these exact pressures eventually return to the (maximum positive)
stagnation value p = 1/2 at the extreme end x = 1, they take small negative
values over more than 90% of the length.
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p

x

Figure 4: Pressure p(x) on ellipse with thickness/length ǫ = 0.1.

6 Thin ellipses and slender spheroids

We are mainly concerned with thin 2D or slender 3D bodies, for which we
need a small-ǫ approximation. Since such bodies increase the stream velocity
by only a small amount, λ is small when ǫ is small; in fact it is at least as small
as ǫ itself. Hence even without further information about the dependence of
λ on ǫ, we can approximate the denominator of (24) by unity, to give (in
both 2D and 3D)

p(x) = −λ− 1

2
λ2 +

1

2

ǫ2x2

1− x2
, (27)

with error of order at most ǫ3. But then, since λ is small, we can also neglect
the term in λ2 relative to that in λ, giving

p(x) = −λ+
1

2

ǫ2x2

1− x2
, (28)

now with errors of order at most the maximum of λ2 and ǫ3.
This is most obvious in 2D for ellipses, since λ = ǫ exactly and the error

in (28) is of order ǫ2. But in that case the second term of (28) is also small
within the above error range, and can and should be neglected relative to the
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p

x

Figure 5: Pressure p(x) on spheroid with slenderness ǫ = 0.1.

first term (so long as |x| is not too close to unity), leading to the constant
pressure

p(x) = −ǫ (29)

on thin ellipses, a result with order ǫ2 error, as already obtained by the thin-
body theory. If we revert to (27), we obtain a more accurate but non-constant
result for ellipses, of the form

p(x) = −ǫ− 1

2
ǫ2 +

1

2

ǫ2x2

1− x2
, (30)

now with formal error of order ǫ3, but which happens to be exact at x = 0.
Both approximations are displayed (as the horizontal line “FIRST APPROX”
and the curve “SECOND APPROX”) relative to the “EXACT” solution, in
Figure 4 for ǫ = 0.1.

Again the 3D result for spheroids is somewhat more complicated. Now
by small-ǫ expansion of the exact result (26) we find a much smaller relative
increase in velocity, namely

λ = −ǫ2
[

log
ǫ

2
+ 1

]

+ O(ǫ4 log2 ǫ), (31)
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so (28) becomes

p(x) = ǫ2
[

log
ǫ

2
+ 1

]

+
1

2

ǫ2x2

1− x2
, (32)

which has an error of order ǫ4 log2 ǫ. Equation (32) is thus a very accurate
approximation so long as |x| is not too close to unity, but does not predict
constant pressure on slender spheroids. It is displayed for ǫ = 0.1 as the
“SECOND APPROX” curve of Figure 5, relative to the “EXACT” curve.

The approximation (32) also follows from the general slender-body for-
mula (19) noting that for the spheroid f(x) = ǫ

√
1− x2, we have A(x) =

B(x) = −ǫ2x, and the argument of the logarithm in (19) is ǫ/2, so the first
two terms of (19) yield the constant part of (32), while the remaining two
terms yield the non-constant part. The denominator of (24) is also restored
if the end correction factor (20) is applied.

Is the pressure on a slender spheroid in 3D then not constant to a leading
order of approximation, as it was on a thin ellipse in 2D? Well, yes in a
sense the pressure can be said to be constant, but only as a very crude first
approximation. If we drop the second term of (32), we leave a constant
pressure

p(x) = ǫ2
[

log
ǫ

2
+ 1

]

(33)

on a slender spheroid, but we have now made an absolute error of order ǫ2.
The constant term (33) that then remains is of order ǫ2 log ǫ, so we have made
a relative error of order 1/ log ǫ, and ǫ must be exceedingly small for this to
be justified. The approximation (33) at ǫ = 0.1 is shown as the horizontal
line labelled “FIRST APPROX” in Figure 5.

The danger of neglecting order ǫ2 terms relative to order ǫ2 log ǫ terms is
illustrated by the fact that if we do wish to drop the second term of (32),
consistently we should also drop the “+1” inside the square bracket of the
first term and even the factor “ 1/2 ” inside the logarithm, since these terms
also contribute order ǫ2 to the final answer. In fact, with the same formal
order ǫ2 error, (33) can be replaced by

p(x) = ǫ2
[

log ǫ+ k
]

(34)

for any finite constant k. It is hardly comfortable to have to deal with an
approximation which has such a large element of non-uniqueness.

However, one redeeming feature of the approximation (33), or of (34)
with k = 1 − log 2 ≈ 0.31, is that it is a good approximation (with much
smaller formal error, of order ǫ4 log2 ǫ) to the pressure at the centre station
x = 0, where the second term of (32) vanishes. Hence the FIRST APPROX
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and SECOND APPROX agree at x = 0 in Figure 5. This enables a quanti-
tative measure of constancy of pressure. In general as x varies, the pressure
coefficient rises from its (small negative) value at x = 0, and we may ask
how small must ǫ be in order that this rise is small relative to the pressure
magnitude at x = 0.

For example, suppose we fix attention on a point where x2 = 1/2, or
x ≈ 0.7. Then the absolute rise in p between the centre station and this
station is ǫ2/2, both for ellipses and spheroids. However, this is relatively
much more significant in the latter case than the former. Thus in order for
the pressure magnitude at this point to be at most 10% different from that
at x = 0, it is only necessary for ǫ to be smaller than 0.2 for ellipses, but ǫ
must be smaller than 2e−6 ≈ 0.005 for spheroids. This comparison is even
more severe closer to the ends, e.g. if we require such pressure constancy as
far from the centre as x2 = 2/3 or x ≈ 0.8, where the absolute rise is ǫ2, then
we require ǫ < 0.1 for ellipses, but a quite unrealistic ǫ < 2e−11 ≈ 0.000033
for spheroids.

7 Slender bodies with near-constant pressure

If the pressure is not constant on a spheroid, is there any body of revolution
on which the pressure is constant? The exact answer is certainly no, but we
only require a slender-body approximation. Specifically we seek shapes f(x)
such that the pressure p(x) given by (19) takes a constant (small negative)
value p0, for all x not close to the ends. This can be done in a straightforward
numerical manner by forcing p(xn) = p0, at a set of N collocation points
x = xn, n = 1, . . . , N , which can lie in 0 ≤ x < 1 using symmetry. If
we specify f(x) by a set of N parameters, this yields a set of N nonlinear
algebraic equations in the N unknown parameters, which can be solved by
Newton’s method.

A convenient parametrisation of the body shape is obtained by the Leg-
endre series

A(x) =

N
∑

n=1

anP2n−1(x), (35)

where PN(t) is the Legendre polynomial and an are the N coefficients to be
determined. Then

B(x) =

N
∑

n=1

anσ2n−1P2n−1(x), (36)
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p

x

Figure 6: Pressure p(x) on “constant” pressure body with slenderness ǫ = 0.1,
compared to exact pressure on spheroid with the same slenderness.

where σn = 1 + 1/2 + 1/3 + · · ·+ 1/n, and

1

2
f(x)2 =

∫ x

1

A(x)dx =

N
∑

n=1

an
4n− 1

[P2n(x)− P2n−2(x)] , (37)

so all quantities required for (19) can be computed readily, given the coeffi-
cients an. The spheroid is the particular case N = 1, with a1 = −ǫ2.

The numerical results for large N depend to a certain extent on the
choice of the collocation points xn, and ultimate refinement of this choice
and of the present numerical method was not sought. A satisfactory grid
was xn = (n − 1)/(N + 1), for which convergence (e.g. of f(0) = ǫ as N
increases) to about 4 figures was achieved by N = 22. The coefficients an
decrease in size quite rapidly, with, for example, a20 generally of the order of
10−8 compared to a1 of the order of 10−2. The final pressure is constant to
more than four figures not only at the grid points, but also for all x less than
xN−1. It is then constant to three figures (falling slightly) between xN−1 and
xN , before increasing rapidly for x > xN , i.e. for x > 0.91 at N = 22. Even
so, at N = 22 the pressure remains within 10% of p0 up to x = 0.93.
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r

x

Figure 7: Shape r(x) of “constant” pressure body compared to spheroid.

It is clearly impossible to maintain constancy of pressure right to the ends.
This is true whether or not the uniformising factor (20) is used; with it, the
extreme end pressure is finite, without it infinite, but in neither case is the
end pressure small and negative. In practice, it made very little difference to
the numerical results whether (20) was or was not used, and loss of pressure
constancy in about the last 7% of the length seems inevitable. Further work is
needed to assess whether this breakdown range can be reduced. In any case,
the present extent of constancy of pressure far exceeds that for a spheroid,
as indicated by the comparison in Figure 6 for ǫ = 0.1.

Figure 7 shows the final body shape r = f(x) at p0 = −0.018, which
generates a body with width/length ratio ǫ = 0.10, compared to a spheroid
of the same slenderness. As we increase |p0|, the body becomes less slender,
and eventually the procedure fails. This is signalled first by a loss of convexity
at about p0 = −0.030 or ǫ = 0.14, with f ′(0) > 0. All “constant” pressure
bodies less slender than this are dumbell-shaped.

Within the whole range of convex bodies, the computed relation between
slenderness ǫ and pressure p = p0 is quite accurately represented by (34) with
k = 0.50, which is to be compared to k = 0.31 for the spheroid result (33).
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8 Relationship to long cavities

Although in principle the present work is independent of the particular appli-
cation to supercavitation, this area is one where there has been a significant
amount of experimental, empirical and computational effort; see, for exam-
ple, Tulin [23] and several review articles in Michel [9]. In this application
the closed “body” of interest is a combination of a relatively short rigid “cav-
itator” or nose, which has a prescribed shape and on which the pressure is
not necessarily constant, a much longer attached cavity, on which the pres-
sure is required to be constant, and another short region of cavity collapse at
the trailing end. In supercavitation the constant negative non-dimensional
pressure is written as p0 = −σ/2, where σ is the “cavitation number”.

Hence the present theory is relevant to the slender-body limit in which
the cavity length far exceeds the cavitator length, and the cavitation number
is small. In a sense this is no different from the numerical consequences in
the previous section of seeking approximate solutions for “constant” pressure
bodies, where we must allow the pressure to be non-constant near the ends
of the body. Those end regions can then act as surrogates for the cavitator
and collapse region, and indeed Reichardt’s early study of supercavitation
[13] has already used this approach.

Significant interest in supercavitation lies in relationships between cav-
itator geometry and cavity dimensions. There are empirical formulae in-
dicating that the length and width of the cavity (relative to the length of
the cavitator) are each proportional to the square root of a drag coefficient
which characterises the geometry of the cavitator. Hence the slenderness ǫ or
width/length ratio of the cavitator-cavity combination is (at least according
to these formulae) independent of the drag coefficient, and thus independent
of the shape of the cavitator, depending only on the cavitation number σ.

For two-dimensional supercavitation, the thin-body theory of Tulin [22]
indicates that σ = 2ǫ, and that the cavity is asymptotically elliptical. This
agrees with the conclusion that, to leading order in ǫ, the pressure on a thin
ellipse is constant and of magnitude p0 = −ǫ, with a consistently small O(ǫ2)
error.

The equivalent result for axisymmetric three-dimensional supercavitation
is a little more problematic. If we are prepared to neglect terms with relative
errorO(1/ log ǫ), then the cavity is asymptotically spheroidal and (34) implies
that

σ = −2ǫ2
(

log ǫ+ k
)

, (38)

for some constant k. This constant k is formally arbitrary, although if the
cavity were exactly spheroidal, k = 0.31 might be preferred. However, the
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σ

ǫ

Figure 8: Cavitation number σ versus slenderness ǫ from (38) with k =
0.3, 0.5, 0.7, compared to supercavitation results of May [8], Savchenko [14]
and Garabedian [1].

cavity is only spheroidal to a very crude approximation, and if we abandon
the spheroidal assumption, then there is no formal asymptotic justification
for (38) at any k. On the other hand, if the cavity asymptotes to one of the
“constant”-pressure bodies constructed in the previous section, then since we
have found that these bodies have a pressure close to (34) with k = 0.50, a
case can be made for use of (38) with k ≈ 0.5.

Figure 8 shows graphs of σ versus ǫ from (38) for k = 0.3, 0.5, 0.7, com-
pared to supercavitation results of May [8], Savchenko [14] and Garabedian
[1]. The May and Savchenko curves are empirical fits to experimental mea-
surements. The May curve is very close to the present k = 0.5 curve. The
Savchenko curve is close to k = 0.7 at the more slender end of the experi-
mental range, and to k = 0.3 at the less slender end, with k = 0.5 being a
reasonable compromise value. The Garabedian curve is a theoretical formula
based on neglect of terms with relative error O(1/ logσ), which is almost (but
not quite!) the same thing as neglect of terms with relative error O(1/ log ǫ),
and seems to give results between k = 0.6 and k = 0.7, which are also very
close to an empirical formula of Reichardt [13]. Other experimental, empir-
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ical or computational results are quoted in articles in Michel [9], which also
fall in the approximate range 0.3 < k < 0.7 of Figure 8.

9 Other applications of slender-body theory

9.1 General inner limit and drag

Let us turn to more general slender-body theories. There are a number of
such theories which use a distribution of 3D or point sources along the x-
axis, with a varying strength m(x) which often can be shown to be equal to
US ′(x) where U is the free stream velocity (normalised here to unity) and
S(x) is the body section area. If the potential of a unit 3D source at the
origin is written G3(x, y, z), we need the limit of such a line distribution as
r =

√

y2 + z2 → 0, and expect this to be of the form
∫

m(ξ)G3(x− ξ, y, z)dξ → m(x) G2(y, z) + b(x), (39)

where

b(x) =

∫

m′(ξ)F (x− ξ)dξ. (40)

Here G2(y, z) is the corresponding unit 2D or line source potential in the
(y, z) cross-section plane, and F (x) is a suitable kernel function. At each
fixed station x, the first term on the right of (39) is “local”, depending only
on the current value of m(x). If the source strength m(x) is not constant,
there is an additional “non-local” term b(x), whose value at station x in
principle depends on values of the axial rate of change of source strength
m′(ξ) at all other stations ξ, expressed as a convolution integral (40) with
weighting function F (x− ξ).

For the simple prototype problem considered so far, namely irrotational
flow of an incompressible inviscid fluid past a single fixed impermeable body,
we have

G3(x, y, z) = − 1

4π

1√
x2 + r2

, (41)

G2(y, z) =
1

2π
log(r) (42)

and

F (x) = − 1

4π
sgn(x) log 2|x|. (43)

Here the non-local term captures the essential elliptic character of the proto-
type boundary-value problem; what we do at one point of space affects what
happens everywhere else.
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Generalisations of the prototype problem sometimes involve asymptotic
results similar to (39) with different 3D source potentials G3 on the left,
but the same or similar functions G2 and F on the right. In particular
there are a number of slender-body problems in which the 2D source G2

is still given by (42) even though G3 and F are different. Physically, this
can be interpreted as saying that although the 3D problem differs from the
prototype, that difference disappears in the 2D near field in the cross-section
plane. However, axial changes in the parameters of that (incompressible)
2D flow induce axial velocities via b(x) which are non-local and capture the
unique three-dimensionality of the problem.

Various important output quantities follow from the above formalism. For
example, local terms (both that already in (39) and others arising from its use
to generate the pressure) do not contribute to the drag on the body, which
is then due to a contribution −b′(x) to the pressure depending on x alone.
Hence the drag is D =

∫

S ′(x)(−b′(x)dx where S(x) is the cross-section area,
so after integration by parts,

D =

∫

dx S ′′(x)

∫

dξ S ′′(ξ) F (x− ξ). (44)

Hence d’Alembert’s paradox D = 0 is verified for the prototype problem,
and indeed for any generalisation where F (x) remains an odd function of x
as in (43). Otherwise, in evaluating the drag by (44) we can replace F (x) by
its even part.

9.2 Compressibility

Inclusion of compressibility of the fluid provides a direct generalisation of
the prototype problem. Then at free-stream Mach number M , the 3D source
function is simply obtained by replacing r2 with (1 −M2)r2 in (41) for the
prototype (incompressible) problem. For subsonic flow with M < 1 this can
always be done, and the net effect is essentially as if F (x) was still given
by (43). The boundary-value problem remains elliptic, and d’Alembert’s
paradox D = 0 still holds.

For supersonic flow with M > 1, the 3D source potential must vanish
outside of the Mach cone r = x/β where β =

√
M2 − 1, so the range of

integration is truncated to ξ < x − βr. Then we find as we let r → 0 that
the local term is again given by the incompressible 2D line source (42), while
the non-local term has kernel

F (x) = − 1

2π
log

2

β
x (45)
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if x > 0, and zero otherwise. Now although b(x) still describes non-local
effects, it only carries a downstream influence, the contribution at station x
only depending on m(ξ) for ξ ≤ x, thus capturing the essential hyperbolic
nature of the original 3D boundary-value problem. Now F (x) is no longer
an odd function, and the drag is

D = − 1

4π

∫

dx S ′′(x)

∫

dξ S ′′(ξ) log |x− ξ|. (46)

This supersonic result was obtained by von Karman and Moore [3], and
improved upon by Lighthill [5]; in fact the supersonic slender-body theory
was obtained before corresponding incompressible or subsonic slender body
theories were derived [25].

9.3 Slender ships

Another qualitatively straightforward generalisation is to slender ships mov-
ing over a free surface, where the linearised disturbance potential must satisfy,
on the plane z = 0, the Kelvin boundary condition

gφz + φxx = 0, (47)

where g is gravity. Then the unit point source potential G3 satisfying (47) is
given by a very complicated formula [26, p. 484], involving a double integral
with respect to the wave number and direction of the water waves. However,
again, the local term in (39) is just given by the simple line source (42).
This now reflects the fact that the near-field limit of the Kelvin condition is
φz = 0, so the plane z = 0 is a plane of symmetry not supporting waves. This
has an immediate local consequence, in that the apparent source strength is
related to the section area of the double body, the ship section being reflected
in z = 0. Thus if S(x) now denotes the true submerged ship section area,
m(x) = 2S ′(x).

However, the wave-like nature of the original 3D flow is retained in the
near field by the non-local term b(x), which now has the kernel function

F (x) = − 1

4π
sgn(x) log 2|x| − 1

8
[H0(gx) + (2 + sgn(x))Y0(g|x|)] , (48)

where H0 is a Struve function and Y0 a Bessel function. The first term of
(48) is given by (43) as in the prototype problem, and the remaining terms
are wave-like. If we formally let g → ∞, these wave-like terms disappear,
and in that limit the Kelvin condition becomes (everywhere) the symmetry
condition φz = 0, so the problem has reduced to the prototype problem for
the double body.
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Since H0 is odd, the even part of the kernel F (x) is −1

4
Y0(g|x|), and the

drag (44) is

D = −1

2

∫

dx S ′′(x)

∫

dξ S ′′(ξ) Y0(g|x− ξ|), (49)

which is the slender-ship wave-resistance formula obtained independently by
Vossers [24], Maruo [7] and Tuck [15].

In fact Maruo obtained (49) simply by approximating Michell’s thin-ship
wave-resistance integral for small draft [10]. That is, in ship hydrodynamics,
to a leading order of approximation, slender-body theory is subsumed in thin-
body theory. It is interesting that Michell’s integral demands information
about the complete offsets y = ±Y (x, z) of the ship, whereas the slender-
ship formula (49) demands only a knowledge of the ship’s section area S(x) =
2
∫

Y (x, z)dz. If a computer program for Michell’s integral is available, there
is no need for a separate computer program for the slender-ship integral (49),
since one can simply run the thin-ship code for artificial rectangular sections
with offsets Y (x, z) = S(x)/(2D) and an arbitrary small draft D.

However, this subsumption does not apply at higher orders of approxi-
mation. Thus, as with the prototype problem, the leading-order slender-ship
potential is second order in the slenderness or beam/length ratio ǫ. In the
prototype problem, the next correction to the inner-region potential is of
fourth order in ǫ. However, in the presence of a free surface this is no longer
the case, and the next term is larger, of third order in ǫ. Not only that, but
it depends on nonlinear free-surface terms neglected in the Kelvin bound-
ary condition (47). Hence this correction cannot be subsumed in (linear)
thin-ship theory. The effect on the drag is that the slender-ship formula (49)
gives a 4th-order result, which is subject to a nonlinear 5th-order correction.
It would be of considerable interest to compute this correction to the wave
resistance, but this does not seem to have been done.

9.4 Stokes flows past slender bodies

We now turn to applications of slender-body theory where the source strength
m(x) is no longer given by the axial rate of change of body-section area. One
such application is to viscous flow, described by the Stokes equations [16].
Then internal (irrotational) sources alone are not sufficient to represent the
flow about a fixed body, and we also need point singularities generating rota-
tional flow, and contributing to drag forces. For slender bodies of revolution
r = f(x), the appropriate generators are then axial distributions of both
point sources and point “Stokeslets”.
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It turns out that, in this problem, the source distribution plays a minor
role, not contributing to the leading-order slender-body approximation. If the
Stokeslet strength is now written m(x), satisfaction of the no-slip boundary
condition on r = f(x) demands that [16]

m(x)

2π

[

log f(x) +
1

2

]

+ b(x) = −1

2
, (50)

or on (−1, 1) that m(x) satisfy the integral equation

m(x)

2π

[

log
f(x)

2
√
1− x2

+
1

2

]

+
1

4π

∫

1

−1

m(x)−m(ξ)

|x− ξ| dξ = −1

2
. (51)

Although the Legendre series (27) provides a convenient way to discretise (51)
for numerical purposes, there are a number of serious difficulties, especially at
the ends, of a character similar to that encountered earlier when attempting
to force the pressure in the prototype problem to be everywhere constant. A
simple alternative [17] is to use inverse methods, in which m(x) is given and
the shape f(x) is determined by (51).

9.5 Solid mechanics for elongated loads

A somewhat similar application in solid mechanics [2, 18] is to a “slender
punch”, i.e. a load applied to a finite elongated region of the plane free
boundary of an elastic half-space. This has applications to elongated footings
for buildings. The similarity to Stokes flow arises from the 4th-order nature
of the partial differential equations describing the problem.

Suppose the punch lies in |y| < f(x), and let m(x) be the (downward)
force per unit length that it exerts. Then the downward displacement w(x)
under the punch can be shown to be proportional to the potential φ of a line
of sources m(x) as in the prototype problem, i.e. as given in the near field
by (13), evaluated for frictionless punches at r = f(x)/2. Specifically

1

2

µ

1− ν
w(x) =

m(x)

2π
log

[

1

2
f(x)

]

+ b(x), (52)

where µ and ν are the elastic (Lame) constants. If there is adhesion, the
point of evaluation differs from r = f(x)/2, but one can then define an
“effective frictionless width” [18] replacing and increasing the actual punch
width 2f(x).

If the loadm(x) is given, on a given punch width 2f(x), equation (52) with
b(x) determined from m(x) by (14) or (15) gives the resulting displacement



9 Other applications of slender-body theory 24

w(x) directly. However, again it is a much more difficult task to solve for
the load m(x) given the displacement w(x), since we then have to solve the
integral equation

1

2

µ

1− ν
w(x) =

m(x)

2π
log

[

f(x)

4
√
1− x2

]

+
1

4π

∫

1

−1

m(x)−m(ξ)

|x− ξ| dξ (53)

for m(x). Equation (53) is quite similar to (51) for slender-body Stokes flow,
and leads to similar difficulties at the ends [12, 18].

9.6 Slender moonpools

Let me mention a final application of slender-body ideas, even more remote
from the original prototype problem, in that it does not involve a streaming
flow, or indeed even a “body”. The application is to sloshing of water waves
in an elongated basin. If this basin is fully enclosed, as in a swimming pool or
lake, there are interesting asymptotic issues for slender basins, concerned with
the seiching modes of motion along the basin, but these issues have little in
common with the source-distribution models discussed in the present paper.
In particular, if the water level at one station x falls, it must rise instantly
at other stations to conserve mass, and the flow in the bounded cross-section
at station x cannot have a source-like character.

However, suppose the “basin” is not closed, having access at each station
x to an ocean of infinite depth. Then when the water level at that station
falls, the outward volume flux so generated can pass to infinity in a source-like
manner. The water level then need not immediately rise at other stations.

For example, the basin may be a “moonpool” [11], a hole giving access
to water beneath an otherwise rigid boundary. This boundary could be the
bottom of the hull of a drilling ship, or perhaps an ice sheet. Here we idealise
the boundary to be a rigid sheet of infinite extent and zero thickness, and the
water to be of infinite extent and depth, and let the moonpool be elongated
in the x-direction.

Now if sloshing is taking place in this moonpool, with a water level varying
with x, there will be an apparent source at each station x, of some strength
m(x) to be determined, and hence if the moonpool is slender, the flow will
appear in the far field to be generated by a line distribution of point sources
of strength m(x) as in (2). Note that there are no waves in the far field, since
the “free” surface there is rigid!

On the other hand, if we move into the near field, with r reduced to the
size of the width of the moonpool, we shall see water waves, with a rise or
fall of the water level in the moonpool. Hence we need again the inner limit
(39). For details of the 2D wave-like inner flow see Tuck and Newman [19].
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σ

ǫ

Figure 9: The first three longitudinal moonpool modes.

However, what is clear without such detail is that, for moonpools with a
rectangular planform, there is a necessity for the whole disturbance potential
φ in the near field as given by (39) to have the identical x-variation along the
pool. That is, the non-local term b(x) needs to be proportional to the local
source strength m(x). If the proportionality constant is µ, we therefore have
to solve an eigenvalue problem, for the integro-differential equation

∫

m′(ξ)F (x− ξ)dξ = µm(x), (54)

with F (x) given by (43). For a pool in (−1, 1), the truncated Legendre series
(35) is a convenient tool for numerical solution of this problem, and the first
three eigenvalues in increasing order are given by

2πµ+ log 2 = 0.2332, 1.4437, 1.9409, . . . . (55)

The first three eigenmodes m(x) are shown in Figure 9. The lowest-order
mode is a symmetric “pumping” mode which does not have an equivalent
for a closed pool, as there is a non-zero net volume of water-surface displace-
ment which would not conserve mass if the pool was closed. The second
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(antisymmetric) mode has a nodal point at the centre station x = 0 and
is the fundamental longitudinal “sloshing” mode. The third mode is sym-
metric with two nodal points, and is also of a pumping nature. All of these
modes seem numerically to have infinite slope at the ends |x| = 1, though
this matter has not yet been investigated analytically.

10 Editorial Note

This review was prepared for and presented as the IMA Lighthill Memorial
Lecture at the British Applied Mathematics Colloquium (BAMC) of 2004.
Subsequent to Professor E.O. Tuck’s death (11 March 2009), the editors
of the ANZIAM Journal decided to invite the winners of the ANZIAM

Medal (www.anziam.org.au/The+ANZIAM+medal) each to submit a paper for
publication in the journal. Dr Y.M. Stokes was asked to look for unpublished
work of the late Professor Tuck, who was awarded this medal in 1999, that
might be suitable for posthumous publication, perhaps with some editing.
This almost complete review article was found in a search of the excellent
webpage he maintained and, with the help of Professor Tuck’s wife, Mrs Helen
Tuck, the source files were located on his computer. The IMA/BAMC

was approached and consented to its publication. After a search for an
appropriate editor an editorial committee of three was agreed, comprising
Professor C.C. Mei, Professor J.N. Newman, and Dr Y.M. Stokes, all former
colleagues of Professor Tuck.

Only minor editing was required and the paper is almost exactly as writ-
ten by Professor Tuck. The conclusions and acknowledgements sections,
which in the original draft contained only the words “to be written”, have
been removed. We did not think it possible to write these sections as Pro-
fessor Tuck would have done. Rather we decided to add this editorial note
explaining the origin of this paper and the reason for the lack of the usual
conclusions and acknowledgments. Dr Stokes would here like to express her
sincere thanks for the editorial assistance of Professors Mei and Newman,
without which this paper would not have been published.

We trust that readers will, like us, find the paper interesting and enjoy-
able, written, as it is, in the much-loved, exuberant presentation style of the
late Professor Tuck.
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