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Computational challenges in data mining
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Abstract

Data mining is applied in business to find new market opportu-
nities from data stored in operational data bases which are used for
day-to-day management. The tools applied combine ideas from statis-
tics, machine learning, data base technology and high performance
computing to find nuggets of knowledge. Data mining is also applied
in science for example to find taxonomies of variable stars and in the
national administration for the management of health care.
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Major computational challenges originate in the size of the data
and its complexity. The analysis of complex or high-dimensional data
suffers from the curse of dimensionality which is made worse if very
large data sets have to be processed. Many current techniques are
very good in dealing with high-dimensional data sets of moderate size
or with very large data sets of moderate complexity but hardly any
techniques are able to analyse very large data sets of high complexity.

The challenges are further explored and computational techniques
are examined with respect to their capability to handle these chal-
lenges. It is seen in particular that finite element methods are very
good in dealing with very large data sets but suffer under the curse of
dimensionality and radial basis functions can deal with very high di-
mensions but not with very large data sets. Additive functions lead to
models which can be used to analyse both high-dimensional and very
complex data sets, in particular when parallel computers are used for
their identification. Examples include multivariate adaptive regression

splines.
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1 Introduction

For also knowledge itself is power.

Francis Bacon (1597)

Mathematics, and in particular, computational mathematics, is a corner
stone of industrial society. Most of the goods we consume have been designed,
tested or even produced using computational systems which are ultimately
based on mathematical principles. The proceedings of the CTAC conference
document a diversity of applications and the techniques which have been
used. The main focus of the applications has been on simulations of industrial
and environmental systems and the models are able to incorporate increasing
complexities. While simulations maintain their importance, the area of large
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scale data analysis is becoming more important. The following example
illustrates this trend.

In 1997 a chess game between the computer Deep Blue and the chess
grandmaster Garry Kasparov ended for the first time with the victory of the
computer [26]. While high-performance computing power was an important
factor in achieving this, the determining factor was the ability of the com-
puter to sift through hundreds of thousands of earlier moves for guidance.
Like Deep Blue, business people look at their huge data collections of ear-
lier transactions, their customer data bases, in order to detect a competitive
edge and new business opportunities. This systematic pursuit of relevant
information is also called business intelligence. Special techniques have been
developed to find relevant business information. Many pitfalls both in re-
spect to aspects of the analysis and computability are encountered, but,
once found, like gold, the information quickly translates into big economic
gains. This analogy with gold mining has led to the term “data mining” for
the collection of the special techniques applied.

The origins of data mining have been traced back to the origins of col-
lection of business data which was done as early as 5500 years ago by people
of the Sumerian and Elam cultures [35], where tax records were written into
dried mud tablets. Since then, methods for the exploitation of the recorded
information with a view to life improvement and business success have been
developed. To this day, tax records are a valuable asset of the taxation office
for the detection of tax fraud.
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A few examples shall illustrate where data mining has been used. Ex-
amples from business include direct marketing, product placing and product
development. A good first introduction to both data mining concepts and
business applications can be found in [9)].

In addition to business problems, data mining is applied in many other ar-
eas. For example, the 1BM “Advanced Scout” [13] data mining tool suggested
that the inclusion of two “bench players” would help the “Orlando Magic”
basketball team beat the competition. Giving these two players important
roles did help the success of Orlando Magic. In the mid 90s all games of
the NBA (National Basketball Association) were analysed by computational
techniques in order to develop new strategies.

Another example where data mining is applied is in health services, for
example in the management of diabetes. In the U.S.A. there are 300,000
people who suffer from insulin-dependent diabetes and 6,000,000 who have
diabetes which does not require insulin for treatment. Important goals in
the management of diabetes include the early detection of people at risk of
having diabetes and the management of secondary illnesses like diabetes-
related blindness, which is the largest cause of blindness in the U.S.A. The
analysis of medical records revealed that regular checks of eyes, kidneys, feet
and cholesterol levels were essential to controlling the secondary effects. Also,
92 percent of the costs were used for 5 percent of the patients which suggests
that most emphasis should be put on the improvement of the treatment of the
most severe conditions. This information gathered from the medical records
did help the health agencies and it was also provided to the doctors in the
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form of advice on best practice (Husum [27]).

Data mining is often seen as a subprocess of the larger process of Knowl-
edge Discovery in Databases or KDD. KDD has been defined as the non-trivial
process of identifying valid, novel, potentially useful and ultimately under-
standable patterns in data [20]. The knowledge discovery process starts with
the identification of business goals, what should be achieved with the discov-
ered information and the identification of what the information should be.
Then the data sets are selected, including operational data of the company
and demographic data, e.g., from the bureau of statistics. After the data has
been selected it needs to be made accessible and then the lengthy stage of
preprocessing starts. In the preprocessing stage a subset of the data may be
chosen, data transformations may be performed, outliers detected and basic
statistics of the data may be performed. After that the actual data mining
process begins and finally the discoveries are implemented, after which a new
cycle of data mining may start. It is estimated that only about 10 percent of
the overall process is data mining [35]. Computational techniques are used
both in the data mining and in the data preprocessing phase.

Due to its origins and by its very nature, data mining is interdisciplinary.
It includes aspects of information technology, including the access of data
in very large data bases, statistics almost in every step of the data analysis
and a preparation phase. Machine learning techniques are some of the most
popular ones used. In order to deal with the large amounts of data, parallel
and high performance computers are used with algorithms which have been
developed by computational mathematicians. Last but maybe most impor-
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FIGURE 1: Data sizes in 1999 (partly from [7]).

tantly, the development and application of data mining techniques as well
as the interpretation of the results does require a large portion of domain
knowledge. Without the understanding of the business, one might find triv-
ial or previously known information in the best case and draw totally wrong
conclusions in the worst case.

The main driver for new computational techniques for data mining ap-
plications is the size of the data collections encountered. In 1999 we can
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already see data warehouses (a systematic collection of data from heteroge-
neous sources) of the sizes of many terabytes (1 terabyte equals 102 bytes).
For example, Wal Mart, a large U.S.A. retailer, has just upgraded its data
warehouse to hold 100 terabytes. See Figure 1 for some comparative data
sets. A prime source of information, the current public Internet has been
estimated to contain 10 terabytes and all the visual information a human
encounters during a lifetime could be stored with a petabyte [7].

So the ultimate computational challenge of data mining is the very large
data size. But we cannot assume that the data base is of fixed size as,
however big, it grows with the company. It has been suggested that the data
sizes grow at a similar rate as the hardware according to Moore’s law, which
means that the size would be doubled every 18 months [7]. This growth has
a tremendous influence on the characteristics of the algorithms as they need
to handle ever larger data sizes as well.

For example, assume that a data mining algorithm needs to solve a dense
linear system of equations of size n, where n is the size of the data set. A
direct solver requires O(n®) floating point operations, which is clearly not
feasible if n is very large. Assume that this algorithm today would take
10 minutes. In 2010, according to Moore’s law, computers will be 150 times
faster but the data base will be 150 times larger as well. So an algorithm with
O(n) complexity would still take 10 minutes to process the entire data base
whereas an algorithm with O(n?®) complexity would require an entire year
for the same task, see Figure 2. This has motivated our research into com-
putational techniques which are scalable, i.e., have an O(n) complexity and
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FIGURE 2: Time for an O(n?) algorithm for growing data bases and hardware
speedup according to Moore’s law.
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are capable of handling complex data sets. In the following sections, these
challenges will be further explored and some previous work in computational
data mining will be reviewed.

An important class of tools provide predictive models which can then
be either directly applied to predict likely customer behaviour or can be
further analysed to find hidden structures in the data set. In particular, one
is frequently interested to determine which variables do have an influence
on the response at all. Examples include insurance companies which want
to be able to predict how likely a new customer will lodge a claim. The
taxation office wants to be able to predict if a subject is likely to commit
taxation fraud. The ability to generalise observed behaviour to so far unseen
instances is central to most data mining activities. Mathematically, this
corresponds to the estimation of a function from data. For our purposes,
we can characterise data as a collection of records. Each record contains
predictor or independent variables z1, ...z, and the response or dependent
variable y. The predictor variables can be binary, categorical, ordered or
real. From millions of records a functional relationship y = f(x1,...,24)
is then to be determined. Often a nonparametric (spline) method is used
for the determination of f in order not to favour any particular behaviour.
The techniques used to build models from data for both the independent
variables x; and the dependent variable y are termed supervised learning as
the knowledge of y can be used to judge or supervise the model. In contrast to
this are clustering techniques where the values of the y have to be extracted
from the distribution of the x;. Such techniques are called unsupervised.
Typically there are tens to hundreds of predictor variables. Examples of
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complex data include customer profiles of banks and insurances, multimedia
and times series data. The number of features which describe these records
can be from ten to over a thousand. The possible number of values of the
(discretised) feature vectors grows exponentially with the dimension. This
has been called the curse of dimensionality [8], and, combined with the
largeness of the data sets poses the major computational challenge of data
mining.

Here, we investigate computational aspects of the determination of f. An
essential tool is approximation. Furthermore the determination of f from the
data should be stable with respect to data errors and incomplete informa-
tion. Typically, there is a trade-off between approximation and stability (or
between bias and variance) and this is just another instance of the famous
Lax equivalence theorem:

The combination of consistency and stability is equivalent to con-
vergence [36].

The approximation question deals with how to choose the function class
from which a function is selected. Examples include neural nets, linear
functions, radial basis function approximations and functions with bounded
higher order derivatives. The choice of this function class does have a large
influence on the approximation error, also called bias, and it provides a lower
limit for the error. While the choice of the function class does have important
implications for the approximation, we will mainly deal with computational
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issues here and we will refer the interested reader to the literature when we
deal with particular classes of functions.

In Section 2, a class of techniques based on radial basis functions which
are known to effectively deal with the curse of dimensionality are shown to be
limited to medium sized data sets as they are not scalable. In Section 3 we see
that an important tool in simulation, the finite element method, is scalable
with the number of data points and can be used effectively for modelling
very large data sets. An alternative approach, based on regression splines is
reviewed in Section 5. Maybe the most effective approach for extremely large
and complex data sets is based on additive models and a parallel algorithm
and feature selection is discussed in Section 4.

2 Computational issues in the determination
of high dimensional predictors using radial
basis functions

In order to explore the challenge posed by the curse of dimensionality fur-
ther, we will investigate radial basis function approximation. In recent years,
radial basis functions have received a lot of attention both theoretically and
in applications. One of their outstanding features is that they are able to
approximate high-dimensional functions very effectively. Thus they seem to
be able to overcome the curse of dimensionality. In the case of real attributes
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x € R4 a radial basis function is of the form
fl@)=> e p(llz — 2D + p(a),
i=1

where () are the data points. Examples for the function p include Gaus-
sians p(r) = exp(—ar?), powers and thin plate splines p(r) = 77 and p(r) =
7% In(r) (for even integers 3 only), multiquadrics p(r) = (r? +¢?)#2 and oth-
ers. The function p(x) is typically a polynomial of low degree and in many
cases it is zero. The radial basis function approach may be generalised to
metric spaces where the argument of p is replaced by the distance d(z, x;).
Reviews on radial basis function research can be found in [18, 31, 12]. Exis-
tence, uniqueness and approximation properties have been well studied.

The evaluation of f(x) requires the computation of the distances between
z and all the data points (. Thus the time required to compute one function
value is O(dn); the complexity is linear in the number of attributes d and
the curse of dimensionality has been overcome. However, if many function
values need to be evaluated, this is still very expensive. Fast methods for
evaluation of radial basis functions have been studied by Beatson, Light,
Newsam and Powell [3, 4, 5, 6]. For example, multipole method which
reduces the complexity to O((m + n)log(n)) has been suggested in [5, 14]
for the evaluation of f(z) for m values of z. For data mining applications,
which have very large n, even this is still too expensive. What is required is
an approximation for which the evaluation is independent of the data size n
and does not suffer under the curse of dimensionality. In the following, we
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will revisit the determination of the function from the data points and see
how the geometry of high-dimensional spaces influences the computational
costs.

The vector of coefficients of the radial basis functions ¢ = (cq,...,¢,)
and the vector of coefficients of the polynomial term d = (dy,... ,d,,) are
determined, in the case of smoothing, by a linear system of equations of the

form:
1B

The matrix 4 = [p(||z() — x(j)H)]ij:l...n
case of the thin plate splines and has to be treated as a dense matrix. How-
ever, the influence of the data points is local and mainly the observed points
close to « do have an influence on the value of f(z). This locality is shared
with the nearest neighbour approximation techniques. However, in higher
dimensions points get more sparse. For example, it is observed in [22] that
the expected distance of the nearest neighbour in a d-dimensional hypercube
grows like O(n~/9) with the dimension and that large numbers of data points
are required to maintain a uniform coverage of the domain. In particular, a
constant distance between a point and its nearest neighbour is obtained if
log(n) = O(d), i.e., the number of points has to grow exponentially with the
dimension. This is just another aspect of the curse of dimensionality.

has very few zero elements for the

If the function to be approximated is smooth enough the number of points
available may be sufficient even in high dimensions. But a computational dif-
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FIGURE 3: 100 nearest neighbours from 10° normal i.i.d. points. (Distance
preserving mapping from 2D (left) and 100D (right).)

ficulty appears which is related to the concentration of measure [37]. The
concentration of measure basically tells us that in high dimensions the neigh-
bours of any point are concentrated close to a sphere around that point. This
is illustrated in Figure 3, where the 100 nearest neighbours of a random point
from a population of a Million normally distributed points are chosen in two
and in one hundred dimensions. For the hundred-dimensional case the neigh-
bouring points are mapped onto 2 dimensions in a random way such that the
distance to the original point are preserved. Ome can clearly see that the
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nearest neighbours are further away in higher dimensions but, more impor-
tantly, that the distance to most of them is very similar. This is the measure
concentration in action. A very large number of neighbours may have to be
considered for a good approximation.

The effect of this on the computation is severe as the determination of a
good approximant will require visiting a large number of neighbouring points
for each evaluation point. In an attempt to decrease the computational work,
a compactly supported radial basis function may be used. However, the
support will have to be chosen such that for a very large number of points
the values of the radial basis function p(||z® — 2()||) will be nonzero. Thus
the linear system of equations (1) will have a substantial number of nonzeros
which ultimately will render the solution computationally infeasible. This
is one motivation to find alternatives to radial basis functions with similar
properties.

3 Finite elements are scalable

Thin-plate splines [17] are an important example of radial basis functions
which provide smooth approximations. In the one-dimensional case, thin-
plate splines are the piecewise cubic smoothing splines. They are compu-
tationally very tractable as they can be represented with the local B-spline
basis [16]. However, explicit representations are also known in higher dimen-
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sions. In two dimensions, for example, one has

f(x1,220) = co + 121 + coxa + Zbk o ((-’El _ gjgk))z + (20 — xék:))Q)
k=1

where ¢(r?) = r?log(r?), for higher dimensions see [39].

The coefficients of the thin plate splines are determined by a linear system
of equations of the form
O+al X| [0 |y
XT 0] |el |0

where ® is the n by n matrix with elements ®; ; = ¢(||z® — 2 ||2), I is the

identity, X is the n by 3 matrix with the ¢-th row containing the values 1, xgl)

and asg) (for the two-dimensional case), b = (by, ... ,b,)T and ¢ = (g, c1,¢2)7.

Computationally, these equations are intractable for large data sizes n
by standard direct or iterative methods, as even the formation of the matrix
® requires O(n?) operations as it is dense. The standard techniques are
thus not scalable in the data size. A few years ago it was thought that the
feasibility of thin plate splines (and similar radial-basis function approaches)
was limited to the case of a few hundred to thousand observations. However,
new techniques have been developed since then which pushed these limits
further. One school of thought uses the locality of the problem, i.e., the fact
that the value f(x) depends only on observations z*) which are close to z.



3 Finite elements are scalable C18

This approach has successfully been used for interpolation [6, 3, 4, 19, 34,
33, 32], i.e., the case of o = 0.

We have developed a different approach which is provably scalable and
can be extended to higher dimensions as well. First, observe that the thin
plate spline minimizes the functional

n 921\ 2 2 2 921\ 2
=S [ () (28 (2 >

k=1

The minimum of this functional is approximated using a non-conforming
finite-element space with piecewise bilinear functions on rectangular ele-
ments. In order to deal with the missing smoothness of the finite element
space the gradients of f are approximated as piecewise bilinear functions as
well. Instead of J; the following function is minimized (which is obtained by
inserting the gradient in J;):

n

Jo(frur,ug) = (f(z®)) —y®)?

k=1
ouy 2 ouy 2 Ous 2 Ous 2
— — — — dx.
+ CY/RQ ((81‘1) + (81‘2 * 81‘1 * 81‘2 .
The f-component of the minimum of J, is a thin plate spline if the u =

(u1,uz)-component is defined by curlu = 0 and the Neumann boundary

value problem
Af(x) =divu(z), z€qG
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with the boundary conditions

g—i(.’r) =u,(x), =€IG

where G is the domain containing the data points z*). Practical tests showed
that the curl condition was not important for a good approximation [29]. It
can be seen that the curl condition may be replaced by tangential boundary
conditions for v and, as the approximation is local, the effect of the boundary
conditions does not have a big influence on the function values in the interior
of the domain.

The finite element solution of the optimization problem proceeds in two
stages:

1. The matrix and right-hand side of the linear system of equations is
assembled. The matrix of this linear system is the sum of low rank
matrices, one for each data point z(®.

2. The linear system of equations is solved.

The time for the first (assembly) stage depends linearly on the data size n
and the time for the second (solution) stage is independent of n. Thus the
overall algorithm scales with the number of data points. The data points
only need to be visited once, so there is no need to either store the entire
data set in memory nor revisit the data points several times. The basis
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functions are piecewise bilinear and require a small number operations for
their evaluation. With this technique the smoothing of millions of data points
becomes feasible.

For increased performance and reduced response time, the parallelisation
of this algorithm has been investigated in [15]. The parallel algorithm exploits
different aspects of the problem for the assembly and the solution stage. The
time required for the assembly stage grows linearly as a function of data
size. For simplicity we assume that the data is initially equally distributed
between the local disks of the processors. (If this is not the case initial
distribution costs would have to be included in the analysis.) In a first step
of the assembly stage a local matrix is assembled for each processor based on
the data available on its local disk. The matrix of the full problem is then
the sum of the local matrices and can thus be obtained through a reduction
step. This algorithm was developed and tested on a cluster of 10 Sun Sparc-5
workstations networked with a 10 Mbit/s twisted pair Ethernet using MPI
on a SUN SMP with 10 processors [15].

If the finite element solution of the Neumann boundary value problem
is denoted by f;, = Kuy one can formulate the optimisation problem as a
quadratic minimisation problem for the gradient w, where

uf = argmin || Kuy, — b||? + auj Cuy,

where C'is the matrix which discretises the penalty term of J,. This problem
is then solved with a Krylov space approximation where the Krylov space is
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spanned by
C~d, (CT'M)C™d, (CT*M)*C~d, ...

for some initial vector d and M = KT K. In the Krylov space basis (which is
orthogonal to the scalar product defined by the matrix C'), the minimisation
problem then leads to a tridiagonal linear system of equations

(T + al)w = ||C~d||e;.

Note that the Krylov space is independent of the parameter «. Thus the
minimisation problem can be solved for multiple o without having to regen-
erate the Krylov vectors, i.e., redo expensive matrix vector operations. This
is important as the parameter « is determined with generalised cross valida-
tion [39, 28], which leads to an algorithm which requires the solution of the
minimisation problem multiple times. When this approach is generalised to
higher dimensions two challenges have to be overcome:

e The standard tensor-product finite element space of piecewise multi-
linear functions suffers from the curse of dimensionality. Work is in
progress to address this curse using subspaces of the finite element
space which have comparable approximation properties.

e The penalty function used for the thin plate spline in two dimensions
does not produce smooth functions in higher than 3 dimensions. Thus
one either has to use higher order derivatives [39], which would require
the introduction of approximate higher derivatives of f in addition to
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the gradient u, or tensor product spaces, or additive models of the type

d d
f(x) = fo+ Zfz(%) + Z fij (@i, j).

1,7=1

These techniques are currently under investigation.

4 B-MARS

Tree-structured techniques are known to be good candidates for dealing with
high dimensional data and they also provide easily interpretable models.
They have been very successful in classification [11] in the form of binary
tree structured classifiers. The domain is repeatedly split into subdomains.
For the finest levels—in the smallest subdomains—the classifier returns a
single class label. Each split is orthogonal to one axis x; such that all the
points with x; < & belong to one subset and all the points with z; > &
belong to the other. The index k and the position £ together with the parent
subdomain determine this split. These parameters are selected such that
the corresponding split has the largest impact on the quality of the resulting
classifier. Thus this is a greedy algorithm and there might be some concern
that a suboptimal partitioning may be found. However, the more important
question is where to stop the partitioning. Good results have been reported
for the generation of very deep trees and successive pruning based on an
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estimator of the error of the classifier which may use a test data set, or,
alternatively, cross-validation. The resulting classification or decision trees
are one of the most important tools in data mining. Not only do they provide
good predictive models, but they are also interpretable in the sense that they
allow further analysis of the domain based on the values of the independent
variables. For example, one may be able to characterise all customers which
do have a certain property, e.g., are likely to respond to a certain marketing
campaign.

Regression trees [11] implement the same ideas for regression, i.e., for real
response variables. They do have the same advantages, and, in fact, they may
be used with logistic regression for the determination classification probabil-
ities. In contrast to finite element techniques based on tensor products of
one-dimensional spaces, regression trees are extremely successful in dealing
with the curse of dimensionality as they have a complexity proportional to
the dimension. They have two shortcomings, however: They do not represent
linear functions well and, more generally, they can not approximate smooth
functions accurately as they are discontinuous, piecewise constant functions.

Better approximation properties are obtained by piecewise polynomial
functions. They are used in the MARS algorithm (Multivariate Adaptive Re-
gression Splines) [23]. Instead of explicitly generating a hierarchy of domains,
MARS generates a hierarchy of basis functions which implicitly define a hier-
archy of domains. An example of a basis function hierarchy is displayed in
Figure 4. At the root of the tree is the constant basis function By = 1. At
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FIGURE 4: Hierarchy of MARS basis functions.

each “partitioning” step two new children are generated:

Bchild1 = Bparcnt(x) (xj - §)+ and Bchild2 = Bparcnt<x)(_xj + 5)—4—

where (z); denotes the usual truncated linear function. It is equal to z for
z > 0 and equal to zero if z < 0. The parent, the variable z; and the value
& are all chosen such that the sum of squared residuals is minimised.

While each node can have offsprings several times there are some rules
for the generation of this tree:

e The depth of the tree is bounded, typically by a value of 5 or less. This
is thought to be sufficient for practical purposes [23] and the bound is
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important to control the computational work required for the determi-
nation of the function values.

e A variable z; is only allowed at most once in a factor of a basis function
By.. This guarantees that the function is piecewise multilinear.

The partitioning of the domain is defined such that on each partition
the function is multilinear. Thus this partitioning does not have the same
interpretative value as in the case of classification and is not recovered by the
algorithm. However, the MARS method generates an ANOVA decomposition
of the form [23]

d d d
f(x) = fo+ Zfz(xz) + Z fij(wi, x5) + Z fign(Ta, x5, 08) + -
=1

ij=1 i k=1

This model may form the basis for further analysis, as it provides information
on which variables may be most important for modelling and which combi-
nations of variables interact. Similar models are obtained in the analysis of
variance, hence the name ANOVA decomposition.

Each sum in the ANOVA decomposition corresponds to a level in the tree
of the basis functions and thus, by limiting the depth of the tree, the number
of variables occurring in the functions is limited. This does avoid the curse
of dimensionality.

The computational complexity of the algorithm, after some clever updat-
ing ideas have been applied, is shown in [23] to be O(dnM_ . /L) where d is
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the dimension, n the number of data points, M.« the number of basis func-
tions considered—some might not be used later because of pruning—and L
is the number of levels of the tree. Thus the algorithm is scalable, i.e., the
complexity is proportional to the data size. However, the proportionality
constant can be very large due to the dependence of O(M?), which limits
the number of basis functions which can be used and thus limits the approx-
imation power of this approach. Another limitation is due to the fact that
a greedy algorithm is used and the choice of basis functions may not be a
global optimum. However, we think that more research into the computa-
tional performance of the MARS algorithm is required.

The basic one-dimensional functions used are truncated powers. It is
known [16] that such functions lead to ill-conditioned linear systems of equa-
tions. Furthermore, the evaluation at a certain point may require the com-
putation of many terms and cancellation errors are likely to occur especially
if highly local effects are modelled. Finally, the coefficients of the basis
functions only provide information about the kind of interaction but are
non-informative otherwise. It would be useful if some information about the
behaviour of the function could be obtained from the coefficients directly. Fi-
nally, in order to deal with very large data sizes, parallel processing becomes
a necessity.

A new method called B-MARS [1] improves on MARS in all these aspects.
First, it is based on hat-functions, the simplest type of continuous B-splines.
The advantage of hat-functions is that they are local. From this, compared
to the original MARS algorithm one gets the following advantages:
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1. The equations are well conditioned.

2. The determination of a function value only requires the evaluation of
a limited number of basis functions which leads to a reduction in both
cancellation errors and evaluation time.

3. Finally, the coefficients of the basis functions are now good approxima-
tions of the function value.

In the case of the MARS algorithm each pair of one-dimensional basis func-
tions is determined by one parameter £&. This makes the implementation
very efficient. However, in the case of hat functions, two parameters are re-
quired, a location and a width of the hat function. The scale parameter is
determined in a hierarchical way. First an initial scale is chosen, so only the
position needs to be found. After the approximation power of a particular
scale has been exhausted, i.e., if a particular scale is unable to improve the
fit, a next smaller scale is chosen which is a fraction 1/K of the original
scale. In this way, scale is incorporated in a natural way into the hierarchy of
basis functions. A side benefit of this approach is that there is a considerable
reduction in the candidate basis functions which need to be tested at each
iteration. Practical tests have confirmed that this reduction in complexity
does not reduce the quality of the resulting models. On the contrary, it was
found that small local nonconformities in the functions were better resolved
in B-MARS [2].

Both MARS and B-MARS are scalable, i.e., have a complexity which is
linear in the number of data points. However, as the number of data points
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can be very large, parallel processing is necessary in order to avoid extreme
computing times. (For example, the analysis of an insurance data set with a
few millions of records required several hours processing time.) It has been
found that the bulk of the computations going on are used to compute least
squares fits which requires large numbers of scalar products. Using a data
partitioning approach, these scalar products are processed in parallel, which
resulted in an algorithm with very high parallel efficiency [2].

5 Additive Models

In the case where the tree of basis functions generated by MARS and B-MARS
contains two levels, namely, the root By = 1 and its children, a model of the
following form is generated:

d
fl@y, o wa) = fo+ Y filw).
=1

The univariate components f; of this additive model are piecewise linear
in the case of MARS. Other commonly used additive models are based on
smoothing splines and local parametric (polynomial) approximations [24]. A
unified treatment for all these approximations reveals that in all cases addi-
tive models are scalable with respect to data size and, like the multivariate
regression splines, conquer the curse of dimensionality. While additive mod-
els are computationally very competitive they also show good performance in
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practical applications. Like other regression models they provide good clas-
sification methods, especially if logistic regression is used. These generalised
additive models can be seen to form the foundation of boosting, which is a
very effective technique to improve simple classifiers [21].

If the probability distribution of the random variables (Xi,..., X4 Y)
which model the observations is known, the best (in the sense of expected
squared error) approximation for the additive model is obtained when

d
fil@) =B = fo— > fulXp) | Xi = ;) (2)
k=1
Kt

and fo = E(Y). (The symbol E(Y | X = z) denotes the conditional expec-
tation of the random variable Y when X = z.) These equations do not have
a unique solution, but uniqueness can be easily obtained if one introduces

constraints like F(f;(X;)) = 0.

In practical algorithms, the estimates are approximated by smooth func-
tions. Let f; be the vector of function values ( fl(xgk))> . Furthermore, let

S; be the matrix representing the mapping between the data and the smooth

f;. The matrix S; depends on the observations xgl), 3t Replacement

» e
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of the estimation operator by the matrix S; in equation (2) leads to

I S - S| |f S1y
SQ I s SQ fQ - Sgy
Sd Sd ce 1 fd de

If the eigenvalues of the S; are in (0, 1) and this linear system of equations is
nonsingular, it can be seen that the Gauss-Seidel algorithm for this system
converges. This method of determining the additive model is the backfitting
algorithm [24]; it has complexity O(ngd) where ¢ denotes the number of
iteration steps. The backfitting algorithm is very general and, in fact, is
used even for nonlinear smoothers. For very large data sets, however, the
algorithm becomes very costly—even though it is scalable in the data size
and does not suffer from the curse of dimensionality—because it needs to
revisit the data ¢d times.

The high cost of the solution of the previous linear system of equations
resulted from the large size of its matrix. Smaller alternative systems are
available for particular cases of smoothers S;. For example, in the case of re-
gression splines one can work with the system of normal equations. Consider
the case of fitting with piecewise multilinear functions. The functions include
the ones used in MARS and are, on each subdomain, linear combinations of
products x;, - - - x;, where every variable x; occurs at most once.

The basis functions of the full space of piecewise multilinear functions
are products of hat functions of the form by (z1) - - - bg(x4). For the full space,
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the normal matrix of the least squares fitting problem becomes sparse with
nonzeros on 3% of the diagonals. But the matrix is huge, being of order m¢?
if each of the d dimensions is discretised by m hat functions. For a four-
dimensional problem with m = 10, the nonzero structure of this matrix is
displayed on the left in Figure 5.

MARS generates additive models consisting of sums of piecewise linear
functions f;(x;). Assume again that in each of the d dimensions, one has m
hat functions as basis. Then the normal matrix of the regression problem is
of order md which becomes manageable. However, closer inspection shows
that this matrix is mostly dense. The nonzero structure for the case m = 10
and d = 4 is found on the right side of Figure 5. A direct solver would require
O(d*m?) operations. But any solver for the problem in the full space would
have a cost at least of O(39m?) if all matrix elements are involved in the
computation. For very large data sets the time to solve the normal equations
for the additive model are also less than the time required for backfitting.

We have developed a parallel variant of the backfitting algorithm [25]
for the determination of the components f; of an additive model which is
adapted to the analysis of very large data sets. The algorithm has four steps:

1. An equal number of data records is assigned to each processor in a
random way.

2. Each processor determines an additive model for its partition. We have
used local linear fitting as a smoother with a small bandwidth which
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FIGURE 5: Left and right diagrams: The sparseness patterns of a 10 x 10 x
10 x 10 piecewise multilinear finite element matrix and the corresponding
additive model matrix (nz = number of nonzeros). Middle diagram: The
number of nonzeros of the finite element matrix and the additive model
matrix as a function of dimension.
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Random partitioning of data

Generate additive models for each partition

Combine models

Combine models

Final smoothing step

FIGURE 6: Parallel algorithm to generate additive model
has relatively high variance but low bias. The smoother is computed
on a fine equidistant grid.
3. The additive models of the different partitions are combined.
4. In a final smoothing step the variance is reduced.
Figure 6 shows schematically these stages of the parallel additive algorithm.

In practical analysis of data from insurance, we showed that this algorithm is
substantially faster than the original MARS algorithm: on a SUN Enterprise
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with 8 processors a generalised additive model was generated in 8 minutes
for data with 1.5 million records and 17 attributes or variables where the
original MARS algorithm required several hours. The algorithm is scalable in
the number of observations and with respect to the number of processors.

In most practical applications not all observed variables are relevant and
the values of some of the variables might depend on other variables and thus
provide redundant information. The predictor variables need to be selected
according to their importance in modelling the response. The LASSO algo-
rithm [38] provides a mechanism for parameter selection for linear models.
(Note that we use parameter here to denote the (3; to distinguish them from
the variables z;.) As the additive model of MARS is a linear model, LASSO
can be applied here as well. Depending on the values of x; this may result
in a model which includes all variables z;.

A model with less variables is obtained, if the parameters are treated
in groups corresponding to the variables. For example, let the 3 ; be the
parameters characterising the function fj:

fr(zy) = Z Br,j Br.j (k)
=1

where By, ; is the j-th basis function (which is a hat function) used to model
fr- We suggest a new block-variation of LASSO [2] where the functions f are
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determined by

(3 = argmin Z(y(i) — ZﬁkJBk,j (a:,(;)))2
i=1

k.j

subject to the constraint

For one-dimensional functions this is ridge regression and for the case of
linear models (where each f is determined by one parameter) this is the
LASSO algorithm. As for LASSO, the choice of the parameter t guides the
selection of the variables. It has been demonstrated [2] that a small enough
choice of t causes only one variable to be selected. Obviously, if ¢ is large
enough, the constraint is not active in the case of non-singular equations and
one obtains a least squares problem.

One way to improve additive models is to include interaction terms f; ;.
It is thought that these interaction terms may have lower spatial resolution
in each dimension than the one-dimensional functions. For some first ideas,
see [30] in this proceedings.
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6 Conclusion

Data mining is a new area of research, especially for computational mathe-
maticians. It is becoming an important activity for many companies, espe-
cially in the service sector. The main computational problems relate to the
size of the data sets encountered and to the complexity of the data. Tradi-
tional computational techniques like finite elements and splines are capable
of handling the computational challenges. New methods like additive models
are being tested.

At the ANU, a small team is working on computational techniques for
data mining applications which are scalable with respect to the data size,
deal with high dimensionality and use parallel computers. In future work we
will further investigate the usage of wavelets and look at other applications
like density estimation, clustering and time series analysis.

A different discussion of some of the challenges from the point of view of
mathematical programming can be found in [10].
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