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Numerical methods in inverse obstacle
scattering

Rainer Kress∗

(Received 7 August 2000)

Abstract

We consider the inverse problem to determine the shape of an
obstacle from a knowledge of the far field pattern for the scattering
of time-harmonic acoustic plane waves. This is a model problem for
applications in radar, sonar, geophysical exploration, medical imaging
and nondestructive testing. It is difficult to solve, since it is nonlinear
and extremely ill-posed. Following the historical development over the
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last fifteen years, in this lecture we shall describe the main ideas of
three different methods for the approximate numerical solution of the
inverse obstacle scattering problem that acknowledge its nonlinearity
and ill-posedness.
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1 Introduction

Consider the scattering of a time-harmonic acoustic wave ui by a given im-
penetrable obstacle described by a bounded domain D in the Euclidean space
IR3 with a connected boundary ∂D. Then the simplest direct obstacle scat-
tering problem is to find the total field u = ui + us such that u satisfies the
Helmholtz equation

4 u+ k2u = 0 in IR3 \ D̄ (1)

with wave number k > 0, the Dirichlet boundary condition

u = 0 on ∂D (2)

and the Sommerfeld radiation condition

lim
r→∞ r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (3)

uniformly with respect to all directions. Physically speaking, the Dirichlet
condition (2) corresponds to a sound-soft obstacle D. Boundary conditions
other than the Dirichlet condition also need to be considered such as the
Neumann condition for a sound-hard obstacle or the impedance boundary
condition. Furthermore, the scattering by a penetrable obstacle D leads to
transmission and resistive boundary conditions. For this lecture the Dirichlet
condition is chosen in order to illustrate some basic ideas. Inverse obstacle
scattering for acoustic waves is of its own practical interest and simultane-
ously it serves as a model case for inverse obstacle scattering for electromag-
netic and elastic waves.
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Due to the Sommerfeld radiation condition (3) the scattered wave us has
an asymptotic behaviour of the form

us(x) =
eik|x|

|x|
{
u∞

(
x

|x|
)

+O

(
1

|x|
)}

, |x| → ∞, (4)

uniformly for all directions. The function u∞, defined on the unit sphere Ω
in IR3, is called the far field pattern of the scattered wave. The basic acoustic
inverse obstacle scattering problem considered in this lecture is, given the far
field pattern u∞ of the scattered wave us for one or several incident plane
waves ui(x) = eik x·d with incident direction d ∈ Ω, to determine the shape
of the scatterer D.

As opposed to the direct scattering problem, which is linear and well-
posed in the sense of Hadamard, the inverse problem is nonlinear, since the
solution to the direct scattering problem depends nonlinearly on the bound-
ary ∂D, and ill-posed, since the construction of the scattered wave us from
its far field pattern u∞ is ill-posed. We want to solve this inverse prob-
lem for frequencies in the resonance region, i.e., for scatterers D and wave
numbers k such that the wavelengths 2π/k is of a comparable size to the di-
ameter of the scatterer. In particular, low frequency methods like impedance
tomography or high frequency methods like physical or geometrical optics
do not yield valid approximations in the intermediate frequency range. For
a detailed study of the inverse obstacle scattering problem we refer to the
monograph [4].

Roughly speaking one can distinguish between two different approaches



2 Uniqueness for the inverse problem C48

for approximately solving the inverse obstacle scattering problem. In one
group of methods the inverse obstacle problem is considered as an ill-posed
nonlinear operator equation and iterative techniques are employed for its
solution. These methods require the solution of the direct scattering problem
for different domains at each iteration step. In a second group of methods
the need of solving the direct scattering problem is avoided. This is achieved
by separating the inverse obstacle scattering problem into a linear ill-posed
part for the reconstruction of the scattered wave from the far field pattern
and a nonlinear well-posed part for finding the location of the boundary of
the scatterer from the boundary condition for the total field. In this lecture
we shall outline main ideas of typical methods from both of these two groups.

2 Uniqueness for the inverse problem

A first question to ask about the inverse obstacle scattering problem is
uniqueness, i.e., the question under what conditions an obstacle is uniquely
determined by a knowledge of its far field patterns for incident plane waves.
This is of interest both for the theoretical study and the implementation
of numerical algorithms. The classical uniqueness result in inverse obstacle
scattering is due to Schiffer (see [4]) and stated in the following theorem.

Theorem 1 Assume that D1 and D2 are two sound-soft scatterers such that
the corresponding far field patterns u∞,1 = u∞,2 coincide for all observation
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directions x̂ ∈ Ω and for all incident directions d ∈ Ω (for a fixed wave
number k), then D1 = D2.

We note that a technique suggested by Kirsch and Kress [14] (see also [4],
p. 111) for uniqueness proofs in inverse obstacle scattering shows that for the
above theorem it is not necessary to know whether the boundary condition for
the two obstacles is the Dirichlet, the Neumann or the impedance condition.

Colton and Sleeman [6] (see also [4], p. 107) showed that the scatterer is
uniquely determined by a knowledge of the far field pattern for one incident
wave provided D is contained in a ball of radius R such that kR < π. It still
remains a challenging open problem to establish if the far field pattern for
one incoming plane wave for one single incident direction and one single wave
number always determines the scatterer without any a priori information.

3 Ill-posedness of the inverse problem

The ill-posedness of the inverse obstacle scattering problem can be illustrated
in terms of expansions with respect to spherical harmonics. Assume that
Y m

n , n = 0, 1, 2, . . . , m = −n, . . . , n, is an orthonormal basis of spherical
harmonics. Then the scattered wave us as solution to the Helmholtz equation
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satisfying the radiation condition has an expansion of the form

us(x) = k
∞∑

n=0

n∑
m=−n

in+1am
n h

(1)
n (k|x|) Y m

n

(
x

|x|
)

(5)

which is valid for large |x| and where h(1)
n denotes the spherical Hankel func-

tion of order n and of the first kind. From the asymptotics for the spherical
Hankel functions for large |x| it follows that the far field pattern of us is given
by

u∞ =
∞∑

n=0

n∑
m=−n

am
n Y

m
n . (6)

Choosing R > 0 such that D is contained within the sphere of radius R
centred at the origin, from Parseval’s equality and the asymptotics for the
spherical Hankel functions for large n it can be deduced that the coefficients
am

n in (5) must satisfy

∞∑
n=0

(
2n

ker

)2n n∑
m=−n

|am
n |2 <∞ (7)

for all r > R. Now consider a perturbation of a given far field pattern u∞
in a norm that is suitable to describe measurement errors, for example in
the L2 norm. Then, in general, the Fourier coefficients of the perturbed far
field pattern uδ

∞ with ‖uδ
∞ − u∞‖L2(Ω) ≤ δ for some error level δ > 0 will not

satisfy the growth condition (7) and therefore no solution to the Helmholtz
equation satisfying the radiation condition with far field pattern uδ

∞ will
exist, i.e., small perturbations of the given data u∞ will make the problem
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to determine the radiating solution us to the Helmholtz equation from its far
field pattern u∞ unsolvable. Errors in the Fourier coefficient am

n of the far
field pattern expansion (6) will be amplified by the factor

h(1)
n (k|x|) = O

(
2n

ker

)n

in the series (5) for us. Therefore, small changes in a finite number of the
Fourier coefficients of u∞ can cause extremely large changes in us. These
large changes in the scattered field us, of course, then will also cause large
changes in the location of the boundary determined through ui + us = 0 on
∂D.

Summarizing, for small changes in the data, in general, no solution to the
inverse obstacle scattering problem exists and if it exists it does not depend
continuously on the data.

4 Approximation of the scattered field

In this section we describe an approximation method for the inverse obstacle
scattering problem that was developed by Kirsch and Kress [13]. Its basic
idea is to break up the inverse scattering problem into two parts: the first
part deals with the ill-posedness by constructing the scattered wave us from
its far field pattern u∞ and the second part deals with the nonlinearity by
determining the unknown boundary ∂D of the scatterer as the location of
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the zeros of the total field ui + us. For the first part, we assume a priori
that enough information is known about the unknown scattering obstacle D
so we can place a closed surface Γ inside D. We then try to represent the
scattered field us as a single-layer potential

us(x) =
∫
Γ
ϕ(y)Φ(x, y) ds(y) (8)

with an unknown density ϕ ∈ L2(Γ) in terms of the fundamental solution

Φ(x, y) =
1

4π

eik|x−y|

|x− y| , x 6= y,

to the Helmholtz equation. The far field pattern u∞ of the single-layer po-
tential (8) has the representation

u∞(x̂) =
1

4π

∫
Γ
e−ik x̂·yϕ(y) ds(y), x̂ ∈ Ω. (9)

Therefore, if the far field pattern u∞ is given, the density ϕ has to be found
by solving the integral equation of the first kind (9). Due to its analytic
kernel, the integral equation (9) is severely ill-posed with the singular values
of the operator S∞ : L2(Γ) → L2(Ω) defined by

(S∞ϕ)(x̂) :=
1

4π

∫
Γ
e−ik x̂·yϕ(y) ds(y), x̂ ∈ Ω,

decaying at least exponentially. This reflects the ill-posed nature of the prob-
lem to determine us from its far field pattern u∞ as described in the previous
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section. For a stable numerical solution of (9) Tikhonov regularization can
be applied, i.e., (9) is replaced by

αϕα + S∗
∞S∞ϕα = S∗

∞u∞ (10)

where S∗
∞ is the L2 adjoint of S∞ and α > 0 denotes a regularization pa-

rameter. After having solved (10) for ϕα, the unknown boundary ∂D is
then determined by requiring the potential (8) with density ϕα to satisfy the
boundary condition ui + us = 0 on ∂D. We set

uα(x) := ui(x) +
∫
Γ
ϕα(y)Φ(x, y) ds(y)

and define an operator
f : Λ → uα|Λ

mapping closed surfaces Λ containing Γ in its interior to the values of uα on
Λ. Then, obviously, we need to solve

f(Λ) = 0, (11)

what can be done in a least squares sense by minimizing the defect ‖f(Λ)‖L2(Λ)

over all surfaces Λ ∈ V contained in some suitable class V of admissible
boundary surfaces.

This reformulation of the inverse scattering problem as an optimization
problem has been analysed in [13] (see also [4]). For details on its discretiza-
tion and for three-dimensional examples we refer to the monograph [4] and
to Kress and Zinn [18].
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In closing this section, we also want to mention that, in principle, one
can replace the approximation of the scattered field us through a single-
layer potential by any other convenient approximation. For example, Angell,
Kleinman, and Roach [2] suggested using an expansion with respect to radi-
ating spherical wave functions in the sense of (5) instead of the single-layer
potential.

Although the methods of Kirsch and Kress and of Angell, Kleinman,
and Roach, which were developed in the mid-eighties have been revived
through more recent papers (see Angell, Jiang, and Kleinman [1] and Haas
and Lehner [8]) they probably will not remain competitive in efficiency with
iterative methods such as the regularized Newton method described in the
next section. The increase in the computational cost for the Newton method
as compared to the methods of Kirsch and Kress and of Angell, Kleinman,
and Roach is compensated by notably much more accurate reconstructions.
However, the methods of this section will keep their importance as instruc-
tive examples for the idea to separate the ill-posedness and the nonlinearity
in inverse scattering.

5 Regularized Newton iterations

Newton’s iteration method for solving inverse obstacle scattering problems
was first used by Roger [20] in 1981. However, only within the nineties a
rigorous foundation was established along the following ideas.
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For a fixed incident field ui, the solution to the direct scattering problem
defines an operator F : ∂D 7→ u∞ that maps the boundary ∂D of the
scatterer D onto the far field pattern u∞ of the scattered wave us. In terms
of this boundary to far field operator, given a far field pattern u∞, the inverse
problem consists in solving the operator equation

F(∂D) = u∞ (12)

for the unknown boundary ∂D. In order to define the operator F properly,
we choose a fixed reference domain D and consider a family of scatterers Dh

with boundaries represented in the form

∂Dh = {x+ h(x) : x ∈ ∂D}, (13)

where h : ∂D → IR3 is twice continuously differentiable and sufficiently
small in the C2 norm on ∂D. Then we may consider the operator F as a
mapping from a sufficiently small ball V ⊂ C2(∂D) into L2(Ω). Note that
we can reformulate the uniqueness result of Colton and Sleeman mentioned
in Section 2 in terms of injectivity of F . The following theorem on the
differentiability of F with respect to the boundary and the characterization
of the derivative is fundamental for the solution of (12) via Newton type
iterations.

Theorem 2 The boundary to far field mapping F : ∂Dh 7→ u∞ is Fréchet
differentiable. The derivative is given by

F ′(∂D) : h→ vh,∞,
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where vh,∞ is the far field pattern of the solution vh to the Dirichlet problem
for the Helmholtz equation in IR3 \ D̄ satisfying the Sommerfeld radiation
condition and the boundary condition

vh = −ν · h ∂u
∂ν

on ∂D. (14)

Rigorous proofs of this result were first obtained by Kirsch [10], in the
sense of a domain derivative via variational methods, and by Potthast [19],
in the sense of Fréchet differentiability via boundary integral equation tech-
niques. The boundary condition (14) can be obtained formally by differen-
tiating the boundary condition u = 0 on ∂Dh with respect to ∂Dh by the
chain rule. We note that the nullspace of the linear operator F ′(∂D) is given
by

N(F ′(∂D)) = {h ∈ C2(∂D) : ν · h = 0},
i.e., by the tangential fields on ∂D. This form of the nullspace reflects the
fact that the solution to the scattering problem remains the same when only
the parametrization of the boundary ∂D is changed. For computational
purposes, this inherent non-uniqueness has to be taken care of by choosing
appropriate classes of parametrizations.

Given a far field pattern u∞, the classical Newton method for solving the
nonlinear equation (12) consists in replacing it by the linearized equation

F(∂D) + F ′(∂D) h = u∞ (15)
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that has to be solved for h in order to improve an approximate boundary
∂D into a new approximation ∂Dh through (13). In the usual fashion, this
procedure is iterated, i.e.,

F ′(∂Dn)hn = u∞ −F(∂Dn), n = 0, 1, 2, . . . , (16)

to obtain a sequence of approximations

∂Dn+1 = {x+ hn(x) : x ∈ ∂Dn}.
Since the operator F ′(∂D) maps h to the far field pattern of the solution
to the boundary value problem (14), it is smoothing and therefore compact,
i.e., the linear equation (15) inherits the ill-posedness from the nonlinear
equation (12). Therefore regularization techniques have to be employed.
Using Tikhonov regularization, the classical Newton iteration (16) has to be
replaced by

αnhn + [F ′(∂Dn)]
∗F ′(∂Dn)hn = [F ′(∂Dn)]

∗ {u∞ − F(∂Dn)} (17)

with a sequence of positive regularization parameters αn. Although within
the last decade progress has been made in the analysis of regularized Newton
methods for solving ill-posed nonlinear operator equations (among others see
Deuflhard, Engl, and Scherzer [7]), the convergence of (17) for the inverse
obstacle scattering problem at present is not satisfactorily settled with only
partial success obtained by Hohage [9].

For practical computations h is taken from a finite dimensional subspace

WN = span{q1, . . . , qN} ⊂ C2(∂D)
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with dimension N and equation (16) is approximately solved by collocating
it at M points x̂1, . . . , x̂M ∈ Ω. Then writing

hn =
N∑

j=1

ajqj

one has to solve the linear system

N∑
j=1

aj (F ′(∂Dn) qj)(x̂i) = u∞(x̂i) −F(∂Dn)(x̂i), i = 1, . . . ,M, (18)

for the real coefficients a1, . . . , aN . In general, N � M and due to the
ill-posedness of (15) the overdetermined system (18) is solved by Tikhonov
regularization, i.e., by a penalized least squares method. Note that the com-
putational cost of one step of the Newton method is mainly determined by
the need to solve the forward scattering problem for the evaluation of the
matrix entries (F ′(∂Dn) qj)(x̂i) and right-hand sides F(∂Dn)(x̂i) for the ap-
proximate boundary ∂Dn. Note, that in view of the boundary condition (14)
computing the cost function F(∂Dn) and the derivatives F ′(∂Dn)(qj) both
require the solution of a Dirichlet problem for the Helmholtz equation in the
domain bounded by ∂Dn. Hence, in a boundary integral equation approach
for solving the direct obstacle scattering problem, for these computations one
needs to solve one boundary integral equation for different right-hand sides,
i.e., evaluating the derivative F ′ does not result in a large increase of the
computational costs as compared with the evaluation of F . Nevertheless,
the need to solve a direct scattering problem in a domain which changes
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in each iteration step makes the Newton iteration method computationally
costly. Note that in a corresponding iteration for the solution of (11) in the
method of Section 4 only the evaluation of a potential and its gradient is
required.

For details on the implementation in the two-dimensional case and nu-
merical examples we refer to Hohage [9], Kirsch [10, 11] and Kress [15, 16, 17]
and for further references to the monograph [4]. Although at the time of this
writing no three-dimensional numerical implementations have been reported,
the existing numerical examples in two dimensions indicate highly accurate
reconstructions and provide evidence for the practicality of regularized New-
ton methods in inverse obstacle scattering.

6 Sampling methods

The methods discussed in the two previous sections and most other meth-
ods as described in the monograph [4] rely on some a priori information
for obtaining initial approximations to start the corresponding iterative pro-
cedures. In this final section we briefly outline the principle ideas of two
methods for finding approximations for the solution to the inverse obstacle
scattering problem without any use of a priori information on the obstacle.
However, these two methods require the knowledge of the far field pattern
for all incident and all observation directions whereas the methods of the two
previous sections work, in principle, with one incident field. These methods
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have been suggested by Colton and Kirsch [3] and by Kirsch [12] and named
sampling methods.

In the sequel, for an incident plane wave ui(x, d) = eik x·d we will indicate
the dependence of the scattered field, of the total field, and of the far field
pattern on the incident direction d by writing, respectively, us(x, d), u(x, d),
and u∞(x̂, d). For g ∈ L2(Ω) consider the so-called Herglotz wave function

vi(x) :=
∫
Ω
eik x·dg(d) ds(d), x ∈ IR3.

By superposition, the scattered wave corresponding to the incident field vi

is given by

vs(x) =
∫
Ω
us(x, d)g(d) ds(d), x ∈ IR3 \ D̄.

We define the far field operator F : L2(Ω) → L2(Ω) by

(Fg)(x̂) :=
∫
Ω
u∞(x̂, d)g(d) ds(d), x̂ ∈ Ω,

and note that Fg is the far field pattern of the scattered wave vs correspond-
ing to the Herglotz wave function vi as incident field.

The first sampling method may be considered as a modification of an
earlier method proposed by Colton and Monk [5] in the mid-eighties and
described in detail in the monograph [4]. Its basic idea is to determine g for
the Herglotz wave function vi such that the corresponding scattered wave vs

coincides with a point source Φ(· , z) located at a point z in the interior of
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the scatterer D. Denoting the far field pattern of the fundamental solution
Φ(· , z) by

Φ∞(x̂, z) =
1

4π
e−ik x̂·z, x̂ ∈ Ω,

obviously this requires to find g = g(· , z) as a solution to the integral equation
of the first kind

Fg(· , z) = Φ∞(· , z). (19)

If g solves equation (19) we have vs = Φ(· , z) and in view of the boundary
condition

vi + Φ(· , z) = 0 on ∂D.

we conclude that
‖g(· , z)‖L2(Ω) → ∞

as the source point z approaches the boundary ∂D. Therefore, in principle,
the boundary ∂D may be found by solving the integral equation (19) for z
taken from a sufficiently fine grid in IR3 and determining ∂D as the location
of those points z where ‖g(· , z)‖L2(Ω) becomes large.

However, unfortunately, the integral equation of the first kind (19) can
be shown to have a solution only in special cases (for example if D is a ball
with centre at z). Nevertheless, the following result can be established (see
Colton and Kirsch [3]).

Theorem 3 Assume that the Dirichlet problem for the Helmholtz equation
in D with homogeneous boundary condition has only the trivial solution, then
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for every ε > 0 and z ∈ D there exists a function g(· , z) ∈ L2(Ω) such that

‖Fg(· , z)− Φ∞(· , z)‖L2(Ω) ≤ ε

and
‖g(· , z)‖L2(Ω) → ∞, z → ∂D.

From this it can be expected that solving the integral equation (19) and
scanning the values for ‖g(· , z)‖L2(Ω) will yield an approximation for ∂D
through those points where the norm of g is large. A possible procedure with
noisy data

‖u∞,δ − u∞‖L2(Ω×Ω) ≤ δ

with error level δ is as follows. Denote by Fδ the far field operator F with
the kernel u∞ replaced by the data u∞,δ. Then for each z from a grid in IR3

determine gδ = gδ(· , z) by minimizing the Tikhonov functional

‖Fδg
δ(· , z) − Φ∞(· , z)‖2

L2(Ω) + α‖gδ(· , z)‖2
L2(Ω),

where the regularization parameter α is chosen according to Morozov’s dis-
crepancy principle, i.e., α = α(z) is chosen such that

‖Fδg
δ(· , z) − Φ∞(· , z)‖L2(Ω) ≈ δ.

Then the unknown boundary is determined by those points where the norm
‖gδ(· , z)‖L2(Ω) increases. For numerical examples in two dimensions we refer
to Colton and Kirsch [3].
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In addition to the fact that the integral equation (19), in general, is not
solvable, the above Theorem 3 does not say anything about ‖g(· , z)‖L2(Ω) for
z ∈ IR3 \ D̄. These drawbacks of the first sampling method were remedied
by Kirsch [12] who, in a second sampling method, suggested to replace (19)
by

(F ∗F )1/4g(· , z) = Φ∞(· , z). (20)

Theorem 4 As in Theorem 3 assume that the Dirichlet problem for the
Helmholtz equation in D with homogeneous boundary condition has only the
trivial solution, then z ∈ D if and only if (20) has a solution g ∈ L2(Ω).

This explicit characterization of the scatterer in terms of the solvability
of the equation of the first kind (20) can be used for a reconstruction with
the aid of a singular system (µn, ψn, gn) of the operator F . Then, in terms of
this singular system, by Picard’s theorem we have that z ∈ D if and only if

∞∑
n=1

|(ψn,Φ∞(· , z))|2
µn

<∞, (21)

where (· , ·) denotes the inner product on L2(Ω).

At a first glance Theorem 4 seems to imply that the nonlinear inverse
problem has been completely solved through a linear problem. However,
there is still a nonlinear problem involved for finding those point z where (21)
is satisfied. Of course, analogous to the sampling method using (19), an
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obvious way to approximately solve this nonlinear problem is by truncating
the series (21) through a finite sum for z on a grid in IR3 and determine
∂D as the location of those points z where this sum becomes large. For
the numerical implementation and examples in two dimensions we refer to
Kirsch [12].

Both sampling methods described in this section can be viewed as meth-
ods breaking up the inverse obstacle scattering problem into a linear ill-posed
problem and a nonlinear well-posed problem. However, as opposed to the
methods of Section 4 the sampling methods have the following advantages:
they do not need any a priori information on the scattering obstacle, they
also work for the Neumann boundary condition without the need to know the
type of the boundary condition, and they work for scatterers having more
than one component. However, on the other hand, the sampling methods
require knowledge of the far field pattern for all incident and all observation
directions.

In general, the sampling methods will not lead to very sharply defined
boundaries. However, if necessary these approximate boundaries then could
be improved for example by using the regularized Newton iteration from the
previous section.
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