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Least squares fitting of parametric surfaces to
measured data

G. A. Watson ∗
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Abstract

The problem is considered of fitting surfaces to measured data
using the least squares norm, where it is assumed that a parameter-
ization of the surface is available. Examples of practical applications
include the product design and quality assurance of manufactured
parts. There has been much recent algorithmic development based on
conventional fitting ideas, mainly orthogonal distance regression. A
different approach is taken here which explicitly takes account of the
measurement process, and this is illustrated by some examples.
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1 Introduction

Let m points xi, i = 1, . . . , m in IR3 be obtained by sampling the surface of a
manufactured part. Then the problem considered here is that of determining
a model part (or equivalently a set of parameters defining the model part)
which best fits those data. This kind of problem is a fundamental problem
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in metrology, where it is required to assess a manufactured part using data
gathered by a coordinate measuring system.

Let a point on a surface in three dimensions be represented by

x = f(α, t),

where α ∈ IRp is a vector of p parameters characterizing the nature of the
surface and t ∈ IR2 is a pair of scalar parameters fixing the position of the
particular point x on the surface. For example, for a sphere, p = 4, with
the 4 parameters giving the co-ordinates of the centre of the sphere and its
radius; t = (θ, φ)T would be the usual trigonometric parameters of a point
on the surface of the sphere.

In the following section, we consider some ways of fitting a model, char-
acterized in this way, to given data. The criterion used is the least squares
norm, although other criteria may be more appropriate on occasions. As
well as describing conventional fitting methods, which take no account of
how the data are obtained, we consider a method which exploits knowledge
of the measurement process, when a coordinate measuring machine is used.
This extends a technique recently discussed for curve fitting in [18]. Some
examples of surfaces are given in Section 3, and some numerical results in
Section 4.
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2 Fitting methods

For given xi ∈ IR3, i = 1, . . . , m, and f , let δi ∈ IR and vi ∈ IR3 satisfy

xi − f(α, ti) = δivi, vT
i vi = 1, i = 1, 2, . . . , m. (1)

Then a standard approach to determining the correct model is to solve
the optimization problem

minimize ‖δ‖2
2 subject to (1).

This is a special case of orthogonal distance regression [3, 7, 14, 19], and cor-
responds to minimizing the least squares norm of the errors in the data. An
alternative approach which corresponds to a residual minimization procedure
is considered (in two dimensions) in [6, 17].

The constraints (1) can of course be eliminated, and so the problem is
essentially the unconstrained minimization of

φ(α, t) =
m∑

i=1

‖xi − f(α, ti)‖2
2 (2)

with respect to α and t = (tTi , . . . , tTm)T . The variables of this problem
partition naturally into two groups (and ti only occurs in the ith term of
the sum) and this has led to interest in methods which exploit the structure,
based on separation of variables or decomposition. Let us assume that it is
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relatively easy to minimize each term of the sum in (2) with respect to ti
(and therefore the sum with respect to t) for fixed α, and for any α ∈ IRp,
define the value function

v(α) = min
t

φ(α, t). (3)

Then the problem can be restated as

find α to minimize v(α), (4)

a problem in IRp only. An iteration of the method can therefore be stated:

find t(k) = arg min
t

φ(α(k), t), update α(k) to α(k+1).

When f is linear in α, updates can readily be obtained by a second min-
imization with t(k) fixed (see, for example, Späth [13]), but the method is
then just the alternating algorithm and performance can be poor. Alter-
natively, whether f is linear or nonlinear, a step of the Gauss-Newton or
Levenberg-Marquardt method can be taken to give α(k+1). In particular, the
Gauss-Newton step d will solve the problem

min
d

‖δ + Jd‖2
2, (5)

where J = ∇αδ. Because ∇tδ = 0 at t = t(k), then this is the correct
Gauss-Newton step in α taking account of the dependence of α on t. Of
course J is easily computed. The resulting iteration process (for both linear
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and nonlinear problems) seems effective: for some evidence, see [15, 16]. A
trust region variant is given in [8]. Note that the solution of the “foot point
problem” for t(k) can, for surfaces, be nontrivial (see, for example, [1, 2, 15]).

The data points xi are often obtained using a coordinate measuring ma-
chine. This is a device in which a probe moving in a particular direction
identifies a point on the part surface; the part is moved (for example ro-
tated) with respect to the machine and this operation is repeated. Sometimes
(although not always), it is possible to identify to good accuracy the probe
directions for each data point, with respect to a particular frame of reference.
Suppose that the ith probe direction is known to be vi, normalized so that
vT

i vi = 1. Then if the size of the probe head is ignored, the probe head will
make contact with the manufactured part at the point xi and with the model
part at the point given by f(α, ti). Let δi denote the distance between these
points; then

xi − f(α, ti) = δivi, i = 1, 2, . . . , m,

and we require to minimize ‖δ‖2
2 subject to these conditions. Comparison

with (1) shows that these systems of equations are identical; however the
problems are not, because now vi is fixed and no longer a parameter of
the problem. Therefore it can no longer be eliminated as before. This fitting
criterion is due to Hulting [9], who claims that the appeal of the approach lies
not just in the use of the measurement design, but also in its compliance with
traditional fixed-regressor assumptions (enabling standard inference theory
to apply).

The advantage of dealing with an unconstrained problem seems to have
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been lost. However, this is not really the case because for each i we can
eliminate the 2 components of ti between the 3 scalar equations making up
(1), to obtain a single equation for δi. Then the real roots of that equation
will give the points where the line defined by the point xi and the direction vi

cuts the surface. Of course there may be no roots if the line through xi in the
direction vi does not cut the model surface. However, if there is at least one
real root, then we can identify uniquely the smallest value, and this we will
refer to (without ambiguity) as δi: then δi and ti (through its dependence
on δi) can be considered as functions of α. If all δi, i = 1, . . . , m exist, then
‖δ‖2 measures the distance of the actual surface from the model one, and is
a function of α only. We can in that case write

F (α) = ‖δ‖2
2.

Notice that the calculation leading to this replaces the “foot point” calcula-
tion of the conventional approach, and can often be considerably simpler.

In addition to function values, derivatives of δ with respect to the com-
ponents of α can usually be computed, and so derivative methods can be
implemented. Dropping subscripts i, the relation connecting relevant quan-
tities is

x − δv = f(α, t).

Differentiating through with respect to α gives

−v∇αδ = ∇αf +
∂f

∂t1
∇αt1 +

∂f

∂t2
∇αt2,
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or [
v :

∂f

∂t1
:

∂f

∂t2

] 
 ∇αδ
∇αt1
∇αt2


 = −∇αf,

a system of 3p equations in 3p unknowns. Thus

∇αδ = −eT
1

[
v :

∂f

∂t1
:

∂f

∂t2

]−1

∇αf,

where e1 is the first co-ordinate vector, provided that the matrix is nonsin-
gular. Consider now conditions for the existence of derivatives.

Theorem 1 Assume that the line through xi in the direction vi cuts the
surface defined by α, but does not lie in the tangent plane to the surface at
the point defined by ti, then ∇αδi exists at this value of α.

Proof: For convenience, the subscript i will be dropped. Then the tangent
plane to the surface defined by α at the point defined by t is perpendicular
to the vector product ∂f

∂t1
× ∂f

∂t2
, so that if vi lies in this plane,

vT (
∂f

∂t1
× ∂f

∂t2
) = 0.

It follows using standard vector analysis that

det

[
v :

∂f

∂t1
:

∂f

∂t2

]
= 0.
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The result follows. ♠
A consequence of the above is that the Gauss-Newton method (or variants

which control the step size) can be used to solve the problem. In particular,
the Gauss-Newton step d is obtained by solving

min
d

‖δ + Gd‖2
2, (6)

where G = ∇αδ. Note that, as in (5), the correct Gauss-Newton step is being
computed.

For models whose orientation is not aligned with the coordinate axes, then
either the rotation parameters can be included in the model parameterization,
or alternatively the data can be rotated. For planar curves, rotating the data
is recommended [6], and this can be done by incorporating an additional
parameter. Data rotation in space (about the origin) of a single point can
be described by two parameters, corresponding to the multiplication of the
data by a Householder matrix

W (ρ, τ) = I − wwT ,

where
w = (cos ρ sin τ, sin ρ sin τ, cos τ)T .

However, for a set of data, this is not sufficient, and it seems necessary to
multiply the data by the product of 3 Givens (elementary rotation) matrices,
corresponding to a sequence of rotations ρ, σ, τ in the (x2, x3), (x1, x3) and
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(x1, x2) planes respectively. The best fit can then be obtained to the rotated
data, and a reverse rotation implemented to obtain the correct model for the
original data. Let β = (ρ, σ, τ)T , and let

x̄i(β) = W (β)xi, i = 1, . . . , m,

v̄i(β) = W (β)vi, i = 1, . . . , m,

where W is the product of the 3 matrices referred to above. Then x̄i(β) and
v̄i(β) are just xi and vi respectively rotated about the origin by an amount
defined by ρ, σ and τ . By analogy with (1),

x̄i(β) − δiv̄i(β) = f(α, ti), i = 1, . . . , m, (7)

permitting ti and δi to be defined as functions of the shape parameters α
and β. Partial derivatives of δ with respect to the components of β are
readily computed from (7). Differentiating with respect to βj and dropping
the subscript i gives

∂W

∂βj

x − ∂δ

∂βj

v̄ − δ
∂W

∂βj

v = ∇tf(α, t)
∂t

∂βj

, j = 1, 2, 3.

Thus as before

∂δ

∂βj
= eT

1 [v̄ :
∂f

∂t1
:

∂f

∂t2
]−1 ∂W

∂βj
(x − δv), j = 1, 2, 3,

provided the matrix is nonsingular. In addition

∇αδ = −eT
1

[
v̄ :

∂f

∂t1
:

∂f

∂t2

]−1

∇αf.
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Note that each matrix ∂W
∂βj

will be a product of three matrices, only one of

which has elements differentiated. The problem in the larger set of variables
can be solved by the Gauss-Newton method under the same conditions as
before. Note that this modifies what is done in [18] to properly align the
vectors vi.

The above strategy, with or without rotation, may be used for any 3-
dimensional shapes which can be given in parametric form. It may in fact
be used for more complicated shapes made up of combinations of simpler
(parameterizable) shapes, in conjunction with a method for segmentation
(where the data points are grouped into sets each belonging to a different
surface). There are many techniques available for segmenting surfaces from
three dimensional data, see for example, [10, 4], and this is not considered
further here.

Let us now consider a few examples of simple parameterizable surfaces to
illustrate the approach.

3 Some examples of surfaces

It is frequently the case that f can be written in the form

f = A(t)α + h(t),
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where A ∈ R3×p, h ∈ R3. This gives an explicit separation of the shape pa-
rameters α from the position parameters t, and displays a linear dependence
on α. Indeed sometimes it has an even simpler form when h can be taken to
be zero. Some examples are now given and it is shown how the components
of δ may be calculated.

3.1 An ellipsoid

For the case of an ellipsoid whose axes are parallel to the coordinate axes,

f = (a + p cos φ sin θ, b + q sin φ sin θ, c + r cos θ)T ,

so that α = (a, b, c, p, q, r)T ∈ R6, and t = (θ, φ)T . The fitting problem has
constraints

xi − δivi = A(ti)α, i = 1, . . . , m, (8)

where

A(t) =




1 0 0 cos φ sin θ 0 0
0 1 0 0 sin φ sin θ 0
0 0 1 0 0 cos θ


 .

Eliminating ti from (8) is readily achieved, so that δi is the smallest modulus
value solving the quadratic equation

3∑
j=1

((xi)j − δi(vi)j − αj)
2

α2
3+j

= 1, l = 1, . . . , m.
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If there is no real solution, this means that the line through xi in the direction
vi does not cut the ellipsoid, and it is then necessary to expand it. For each
such value of δi obtained, the corresponding values of ti = (θi, φi) are readily
calculated from (8).

3.2 An ellipsoidal cylinder

Assuming that an ellipsoidal shaped cylinder has axis the x3 axis, then we
can write

f = (a + p cos θ, b + q sin θ, z)T .

so that α = (a, b, p, q)T ∈ R4, and t = (θ, z)T . The shape parameters are
the usual planar ones, and the position parameters correspond to the usual
angular position, and the distance along the x3 axis. The fitting problem has
constraints

xi − δivi = A(ti)α + (eT
2 ti)e3, i = 1, . . . , m, (9)

where

A(t) =


 1 0 cos θ 0

0 1 0 sin θ
0 0 0 0


 .

Eliminating ti from (9) is readily achieved. Clearly, δi is then the smallest
modulus value solving the quadratic equation

((xi)1 − δi(vi)1 − a)2

p2
+

((xi)2 − δi(vi)2 − b)2

q2
= 1, i = 1, . . . , m. (10)
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If there is no real solution, this means that the line through xi in the direction
vi does not cut the cylinder, and it is then necessary to increase the cylinder
radius. This situation is perhaps most likely for the initial approximation,
and provided the cylinder parameters are adjusted to avoid difficulties as
identified by Theorem 1, should not occur again.

For each such value of δi obtained, the corresponding values of ti = (θi, z)
are readily calculated from (9).

3.3 A right circular cone

For simplicity, consider the special case of a right circular cone whose axis is
parallel to the x3 axis. Then we can write

f = (a + s cos θ, b + s sin θ, c − ds)T ,

where α = (a, b, c, d) ∈ R4 and t = (θ, s)T . The values of a, b, c give the
coordinates of the apex of the cone, and d is the cotangent of the angle the
side of the cone makes with the x3 axis. In the position vector t, θ is the
angle which defines the position of the point on the the surface of the cone
with respect to a slice of the cone through the point and parallel to the x1, x2

plane, and s is the distance of the point from the axis. The fitting problem
has constraints

xi − δivi = A(ti)α + h(ti), i = 1, . . . , m, (11)
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where

A(t) =


 1 0 0 0

0 1 0 0
0 0 1 −s


 ,

and h = s(cos θ, sin θ, 0)T . Here δi is the smallest modulus value solving the
quadratic equation

((xi)1 − δi(vi)1 − a)2 + ((xi)2 − δi(vi)2 − b)2 = ((xi)3 − δi(vi)3 − c)2/(d2).

From this value, corresponding values of ti = (θi, si)
T are readily obtained

from (11).

3.4 A torus

As a final example, we consider a slightly more complicated shape, a torus
generated by rotating an ellipse about an axis. Let us assume that it is
aligned so that its axis is parallel to the x3 axis. Then we have What is last

component here??

f = (a + cos φ(m + r cos θ), b + sin φ(m + r cos θ), c + s sin θ)T ,

where the centre of the torus is (a, b, c)T , the semi-axes of the ellipse are r
and s, and the distance from the centre of the torus to the centre of the
ellipse is m, assumed greater than r and s. Then

α = (a, b, c, m, r, s)T ,
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and t = (θ, φ)T , the parameter φ fixing the plane x2 − b = tanφ(x1 − a)
of an elliptical slice of the torus, and the parameter θ fixing the position of
the point on the surface of the torus in that plane. The fitting problem has
constraints

xi − δivi = A(ti)α, i = 1, . . . , m, (12)

where

A(t) =




1 0 0 cos φ cos φ cos θ 0
0 1 0 sin φ sin φ cos θ 0
0 0 1 0 0 sin θ


 ,

It is not difficult to eliminate ti from (12), although the outcome is a quartic
in δi, reflecting the fact that it is possible for a line through xi in the direction
vi to cut the torus 4 times. Therefore the calculation of the smallest δi is
not quite as straightforward as in the previous examples. However, once this
is done, the corresponding values of θi and φi are readily obtained, and the
Gauss-Newton method can be implemented as described previously.

It is readily seen how many other parametrically defined surfaces, such as
paraboloids of revolution, hyperboloids, helicoids, more general conoids etc
can be treated in exactly the same way.
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x1 2 1 -1 -2 1.0 0.5 -0.5 -0.5 -1.5 -1.0 -0.5 -0.5
x2 0 0 0 -1.0 0 0.5 -0.5 -1.0 0.5 0.0 -1.0 1.0
x3 0 -0.8 -1.0 0 0.0 -1.0 -1.0 0.3 0.0 -1.0 0.0 0.0
v1 -1 -1 1 -1 -1 1 -1 1 3 1 1 1
v2 0 0 0 0 -1 1 -1 2 1 0 2 -2
v3 0 1 1 0 0 -2 -2 0 0 1 0 0

Table 1: Ellipsoid data and probe directions

4 Some numerical examples

Programmes written in Matlab have been used to obtain numerical results
for some of the surfaces described in the previous section. This is illustrated
by a few examples.

Example 1: Consider fitting an ellipsoid (in normal orientation) to the
data given in Table 1, where we also list appropriate directions vi (not nec-
essarily normalized).

Starting with the approximation

α = (0, 0, 0, 2, 1, 1)T ,

the performance of the method is shown in Table 2, stopping when ‖∇αF‖2

is less than 1.0e-4.
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k F ‖∇αF‖2 γ
1 0.2628 2.0769 1
2 0.1094 0.1683 1
3 0.1084 0.0058 1
4 0.1083 0.0039 1
5 0.1083 0.0004 1
6 0.1083 0.0002 1
7 0.1083 4.5e-5

Table 2: Performance for ellipsoid and Table 1 data

The final parameter values obtained are

α = (0.0627,−0.0232, 0.0595, 1.9046, 1.0612, 1.2065)T.

Allowing the data to rotate, starting from this approximation (with initially
zero rotations), gives the results shown in Table 3. The strategy for choosing
γ was to start with γ = 1 and halve in the event of either a larger value of the
objective function being obtained or no solution for some δi. The benefits to
be gained by allowing rotation are clear. The final parameter values are in
this case

α = (0.0753, 0.0319, 0.1358, 2.1093, 0.9977, 1.2454)T,

with (in radians) ρ = 0.1059, σ = 0.1317, τ = 0.1565. Reasonable accuracy
in terms of the objective function value can be obtained (particularly in the



4 Some numerical examples C86

k F ‖∇α,βF‖2 γ
1 0.1083 0.6644 1
2 0.0424 0.3939 0.5
3 0.0237 0.6357 1
4 0.0180 0.0205 1
5 0.0180 0.0120 1
6 0.0180 0.0004 1
7 0.0180 3.6e-5

Table 3: Performance for rotated ellipsoid and Table 1 data

latter case) while the gradient is still relatively large, and it may be sensible
to use a different criterion to stop the iteration.

Example 2: Consider fitting an ellipsoidal cylinder (with axis parallel to
the x3 axis) to the data (m=15) shown in Table 4. The vectors vi were chosen
to be the vectors pointing from the corresponding data points to the x3 axis,
in the x1, x2 plane, that is

(vi)j = −(xi)j , j = 1, 2, (vi)3 = 0, i = 1, . . . , m,

correctly normalised.

The performance of the method starting from

α = (0, 0, 1, 2)T
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x1 1.1949 1.1910 0.8096 0.2567 -0.4115 -0.4132 -0.9547 -0.7879
x2 -0.1079 0.6293 1.5428 1.6519 1.7667 1.0866 0.2021 -0.7269
x3 0.3858 0.7093 0.8159 0.3102 0.5210 0.0553 0.7238 0.4778
x1 -0.4251 -0.1356 0.6315 0.8743 1.2314 0.9913 1.0420
x2 -1.7736 -2.0980 -2.2067 -1.4398 -0.5597 0.2415 0.9445
x3 0.4465 0.8337 0.6812 0.9869 0.8562 0.4897 0.6793

Table 4: Ellipsoidal cylinder data

k F ‖∇αF‖2 γ
1 0.9314 5.6606 1
2 0.2676 0.3580 1
3 0.2615 0.0080 1
4 0.2615 0.0002 1
5 0.2615 9.1e-6 -

Table 5: Performance for ellipsoidal cylinder and Table 4 data
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Figure 1: Cone data

is shown in Table 5. The final vector of parameters is

α = (0.1788,−0.2094, 1.0186, 2.0208)T .

Example 3: Consider fitting a right circular cone to the data points shown
in Figure 1, which were generated by making random perturbations to 36 data
points from the surface of the cone parametrized by α = (0, 0, 0, 2)T . This
means that the “ideal” cone (which is assumed to have axis parallel to the
x3 axis) has apex at the origin and the sloping side makes an angle cot−1 2
with that axis.
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Figure 2: Model cone with data
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k F ‖∇αF‖2 γ
1 0.8065 7.6181 1
2 0.1887 1.3572 1
3 0.1569 0.0689 1
4 0.1568 0.0034 1
5 0.1568 0.0001 1
6 0.1568 5.6e-6 -

Table 6: Performance for right circular cone and Figure 1 data

The vectors vi were chosen to be the unit vectors pointing from the cor-
responding data points to the x3 axis, in the x1, x2 plane, as in the previous
example, except for that corresponding to the first data point (approximating
the apex) which was e3.

The performance of the method starting from

α = (0, 0, 0, 2)T

is shown in Table 6. The final vector of parameters is

α = (0.1661,−0.0991, 0.0928, 2.0949)T .

Figure 2 shows the final model cone with the data.
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5 Conclusions

A method has been presented for fitting parametrically defined surfaces to
data which makes explicit use of the probe directions when the data are
obtained using a coordinate measuring machine. The method is based on
the Gauss Newton method, but could be modified to include restrictions on
the step size in a standard manner.

If the probe directions are not explicitly available (or even if they are),
then traditional methods like orthogonal distance regression can be used.
There may be an argument for using the present method even with estimated
probe directions. For example, for symmetric shapes like spheres or ellipsoids,
natural directions to take are those from the data to the centre, if a good
estimate of that is available, as these would likely be aligned with the actual
probe directions. That is effectively what is being done in Example 2 above.
There are two other advantages: firstly, the potentially awkward foot point
problem is avoided; secondly, the method readily generalises to other norms.

Finally, we point out that orthogonal distance regression techniques for
offset surfaces is another possible alternative to the conventional approach:
see for example [5, 11, 12].
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