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A mathematical model for heat transfer in
grain store microclimates

Alexsandar Antic James M. Hill ∗

(Received 7 August 2000)

Abstract

Australia’s reputation as a supplier of insect-free grain is being
threatened by Psocids (Liposcelis spp.), an insect pest which is wreak-
ing havoc within the Australian grain industry. These pests are very
mobile and appear to move in and out of infested grain bulks in re-
sponse to variations in temperature. This movement is the cause of
much difficulty in controlling these insects so an understanding of what
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happens to the heat transfer at the surface of the grain bulk would
allow a better understanding of the observed behaviour by these in-
sects. Here we examine the heat transfer at the grain store surface
and the grain bulk surface. A heat transfer variant of the theory of
“double-diffusivity” is developed, which is a mathematical model that
assumes two separate diffusion paths; one for high-diffusivity and one
for regular-diffusivity. This approach takes into consideration the fact
that the rate of heat transfer through the grain is different to that
through the interstitial air surrounding the grain. Based on a heat-
balance approach, approximate analytical results are obtained from
which the overall variation in temperature close to the grain store
wall may be calculated. The behaviour for typical parameter values
is shown graphically.
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1 Introduction

Australia is one of the worlds major grain exporters with a reputation for
supplying clean, high-quality, and most important of all, insect-free grain.
In recent years Psocids have proved to be a very problematic pest to the
Australian grain industry. One reason why these particular pests are a major
problem is because of their ability to move rapidly in and out of infested grain
bulks (up to approximately 30 mh−1) in, what is believed to be, a response
to changes in environmental factors, and in particular temperature. This
movement makes it quite difficult to control the populations of these insects
by pest control methods such as fumigation as their movement means that a
number of them do not remain long enough within the fumigated grain bulk
to absorb a lethal dosage of the fumigant. An understanding of what happens
from a heat transfer viewpoint at the surface of the grain bulk will allow a
better understanding of the observed behaviour by these insects. It will allow
predictions to be made of insect activity which may lead to application of pest
control methods to be timed to periods of certain insect activity. The surface
of the grain bulk which comes into contact with the vertical grain store wall
is of particular interest as this is where considerable diurnal temperature
fluctuations occur and where Psocids have been observed.

In this study we examine the heat transfer on the microscopic scale at
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the grain bulk surface which comes into contact with the vertical grain store
surface and we ignore any convective effects. Our aim is to understand the
micro-environment which the insect experiences in such a region, and to
determine how ambient temperatures affect the temperature at this surface.
We examine this “micro-surface” by developing a mathematical model to
obtain a temperature profile of this region. This model is based on a heat
transfer variant of the theory of “double-diffusivity” as proposed by Hill [1].
Such an approach lends itself well to our problem as it takes into consideration
the fact that the rate of heat transfer through the grain is different to that
through the interstitial air surrounding the grain.

In the following section we propose modelling the flow of heat through
a grain silo by means of the established mathematical model of diffusion
in a media with two distinct diffusivity mechanisms, one of high-diffusivity
and one of regular-diffusivity, and referred to as “double-diffusivity” theory.
Here we propose a heat transfer variant of the “double-diffusivity” model
in which heat is propagated along both grain-paths and air-paths, and in
addition there is a transfer of heat from grains to air and vice-versa. In the
subsequent section we describe a heat-balance approximate solution of the
coupled partial differential equations (2). The coupled ordinary differential
equations (21) and (22) for the two moving fronts X1(t) and X2(t) are solved
numerically and some results are presented in Section 4.
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2 The double-diffusivity model

Following the notion of double-diffusivity as outlined in Hill [1] and related
papers [2]–[6], we envisage a closely packed grain silo such that every point
in the silo is connected to every other point by either a grain-path or by an
air-path, and we envisage heat propagating along both air and grain paths.
Moreover, we make the idealisation that at every point we can associate an
air-temperature T1(x, t) and a grain-temperature T2(x, t) such that the actual
physical temperature T (x, t) is determined from

T (x, t) =
1

2
(T1(x, t) + T2(x, t)) . (1)

In addition, for heat propagating along air and grain paths, we speculate that
there can be transfer of heat from grains to air, and vice-versa. As described
in detail in [1], the one-dimensional double-diffusivity model takes the form

∂T1

∂t
= κ1

∂2T1

∂x2
− k1T1(x, t) + k2T2(x, t),

∂T2

∂t
= κ2

∂2T2

∂x2
+ k1T1(x, t) − k2T2(x, t),

(2)

where κ1 and κ2 denote the thermal diffusivities of air and grain respectively,
and k1 and k2 denote the heat-transfer coefficients from air to grain, and from
grain to air respectively. This version of the double-diffusivity model was first
proposed by Rubinstein [7], and from the random walk derivation given in [1]
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we have k1, k2 > 0. We wish to solve (2) subject to the following initial and
boundary conditions

T1(x, 0) = T10, T2(x, 0) = T20, (3)

T1(0, t) = Tb(t), T2(0, t) = Tb(t), (4)

where T10 and T20 are constant interior solutions of (2) and therefore satisfy

k1T10 = k2T20, (5)

and Tb(t) is some prescribed time-dependent boundary temperature. In the
following section we propose a heat-balance approximate solution of (2)–(4)
using time-dependent cubic profiles in the spatial variable x for both T1(x, t)
and T2(x, t).

3 The heat-balance integral method

The basic idea of the heat-balance integral method for the ordinary heat
conduction equation is to assume a “penetration depth”, which varies with
time and beyond which there is effectively no heat-flow. Such an approach is
well suited to our problem as such penetration depths are observed in grain
silos. In addition a simple polynomial expression in the spatial variable is
adopted with all the necessary boundary data and the assumed conditions
applying at the time varying penetration front. An ordinary differential
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equation for the moving penetration front is then determined by satisfying
the partial differential equation in an average or integral sense. In the case of
the coupled system (2) we assume two moving penetration fronts X1(t) and
X2(t). For this problem we deduce a coupled system of ordinary differential
equations for X1(t) and X2(t) as follows.

For T1(x, t) we suppose that for x ≥ X1(t), we have

T1(x, t) = T10,
∂T1

∂x
(x, t) = 0, (6)

so that in particular on the moving heat front x = X1(t), we have

T1(X1(t), t) = T10,
∂T1

∂x
(X1(t), t) = 0. (7)

Upon differentiating the first of these equations with respect to time and
utilising the second equation we may deduce

∂T1

∂t
(X1(t), t) = 0, (8)

and accordingly from (2)1, we have

∂2T1

∂x2
(X1(t), t) =

k1

κ1
T10 − k2

κ1
T2(X1(t), t). (9)

It is a simple matter to show that the general time-dependent cubic temper-
ature profile

T1(x, t) = a(t) + b(t)x + c(t)x2 + d(t)x3, (10)
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satisfying (4)1, (7) and (9) becomes

T1(x, t) = T10 + (Tb(t) − T10)

(
1 − x

X1(t)

)3

− (T2(X1(t), t) − T20)
X1(t)xk2

2κ1

(
1 − x

X1(t)

)2

, (11)

upon noting the relation (5).

Similarly, for T2(x, t) we have

T2(X2(t), t) = T20,
∂T2

∂x
(X2(t), t) = 0,

∂2T2

∂x2
(X2(t), t) =

k2

κ2

T20−k1

κ2

T1(X2(t), t),

(12)
and the most general cubic profile satisfying these conditions and (4)2 and (5)
can be shown to become

T2(x, t) = T20 + (Tb(t) − T20)

(
1 − x

X2(t)

)3

− (T1(X2(t), t) − T10)
X2(t)xk1

2κ2

(
1 − x

X2(t)

)2

. (13)

Now, on introducing the averages θ1(t) and θ2(t) defined by

θ1(t) =
∫ X1(t)

0
T1(x, t)dx, θ2(t) =

∫ X2(t)

0
T2(x, t)dx, (14)
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and integrating (2)1 over [0, X1(t)] and (2)2 over [0, X2(t)] we may deduce
the following equations

dθ1(t)

dt
+ k1θ1 = −κ1

∂T1

∂x
(0, t) +

dX1

dt
T10 + k2

∫ X1(t)

0
T2(x, t)dx,

dθ2(t)

dt
+ k2θ2 = −κ2

∂T2

∂x
(0, t) +

dX2

dt
T20 + k1

∫ X2(t)

0
T1(x, t)dx.

(15)

In order to evaluate the integrals on the right-hand side of (15)1 we use the
approximate profiles (11) and (13) to obtain

∫ X1(t)

0
T2(x, t) dx = Tb(t)X1(t) + X1(t) (Tb(t) − T20)

×
(

X1(t)
2

X2(t)2
− 1

4

X1(t)
3

X2(t)3
− 3

2

X1(t)

X2(t)

)

−k1X2(t)X1(t)
2

2κ2

(T1(X2(t), t) − T10)

×
(

1

2
− 2

3

X1(t)

X2(t)
+

1

4

X1(t)
2

X2(t)2

)
, (16)

∫ X2(t)

0
T1(x, t) dx = Tb(t)X2(t) + X2(t) (Tb(t) − T10)

×
(

X2(t)
2

X1(t)2
− 1

4

X2(t)
3

X1(t)3
− 3

2

X2(t)

X1(t)

)
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−k2X1(t)X2(t)
2

2κ1
(T2(X1(t), t) − T20)

×
(

1

2
− 2

3

X2(t)

X1(t)
+

1

4

X2(t)
2

X1(t)2

)
. (17)

Further, on using the following expressions obtained from the cubic temper-
ature profiles (11) and (13) we find

θ1(t) = T10X1(t) +
X1(t)

4
(Tb(t) − T10) − X1(t)

3k2

24κ1

(T2(X1(t), t) − T20) ,

∂T1

∂x
(0, t) =

−3

X1(t)
(Tb(t) − T10) − X1(t)k2

2κ1

(T2(X1(t), t) − T20) ,

θ2(t) = T20X2(t) +
X2(t)

4
(Tb(t) − T20) − X2(t)

3k1

24κ2
(T1(X2(t), t) − T10) ,

∂T2

∂x
(0, t) =

−3

X2(t)
(Tb(t) − T20) − X2(t)k1

2κ2
(T1(X2(t), t) − T10) ,

(18)

and from (5), (15) and (16)–(18) we may deduce the coupled ordinary differ-
ential equations for X1(t) and X2(t):

X1(t)
∂

∂t
(Tb(t)) + X

′
1(t) (Tb(t) − T10) − X1(t)

2X
′
1(t)k2

2κ1
(T2(X1(t), t) − T20)

−X1(t)
3k2

6κ1

∂

∂t
(T2(X1(t), t)) = (Tb(t) − T10)

(
12κ1

X1(t)
− X1(t)k1

)
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+ (T2(X1(t), t) − T20)

(
1 +

X1(t)
2k1

12κ1

)
2X1(t)k2

+ (Tb(t) − T20) 4X1(t)k2

(
1 − 3

2

X1(t)

X2(t)
+

X1(t)
2

X2(t)2
− 1

4

X1(t)
3

X2(t)3

)

+ (T1(X2(t), t) − T10)
4k1k2X1(t)

2

κ2

(
X1(t)

3
− X2(t)

4
− X1(t)

2

8X2(t)

)
, (19)

X2(t)
∂

∂t
(Tb(t)) + X

′
2(t) (Tb(t) − T20) − X2(t)

2X
′
2(t)k1

2κ2
(T1(X2(t), t) − T10)

−X2(t)
3k1

6κ2

∂

∂t
(T1(X2(t), t)) = (Tb(t) − T20)

(
12κ2

X2(t)
− X2(t)k2

)

+ (T1(X2(t), t) − T10)

(
1 +

X2(t)
2k2

12κ2

)
2X2(t)k1

+ (Tb(t) − T10) 4X2(t)k1

(
1 − 3

2

X2(t)

X1(t)
+

X2(t)
2

X1(t)2
− 1

4

X2(t)
3

X1(t)3

)

+ (T2(X1(t), t) − T20)
4k2k1X2(t)

2

κ1

(
X2(t)

3
− X1(t)

4
− X2(t)

2

8X1(t)

)
. (20)

Now, as the thermal diffusivity of air is greater than that of grain, we make
the assumption that X1(t) > X2(t). This assumption implies T2(X1(t), t) =
T20 which simplifies equations (19) and (20) to

X1(t)
∂

∂t
(Tb(t)) + X

′
1(t) (Tb(t) − T10) = (Tb(t) − T10)

(
12κ1

X1(t)
− X1(t)k1

)
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+ (Tb(t) − T20) 4X1(t)k2

(
1 − 3

2

X1(t)

X2(t)
+

X1(t)
2

X2(t)2
− 1

4

X1(t)
3

X2(t)3

)

+ (T1(X2(t), t) − T10)
4k1k2X1(t)

2

κ2

(
X1(t)

3
− X2(t)

4
− X1(t)

2

8X2(t)

)
, (21)

X2(t)
∂

∂t
(Tb(t)) + X

′
2(t) (Tb(t) − T20) − X2(t)

2X
′
2(t)k1

2κ2
(T1(X2(t), t) − T10)

−X2(t)
3k1

6κ2

∂

∂t
(T1(X2(t), t)) = (Tb(t) − T20)

(
12κ2

X2(t)
− X2(t)k2

)

+ (T1(X2(t), t) − T10)

(
1 +

X2(t)
2k2

12κ2

)
2X2(t)k1

+ (Tb(t) − T10) 4X2(t)k1

(
1 − 3

2

X2(t)

X1(t)
+

X2(t)
2

X1(t)2
− 1

4

X2(t)
3

X1(t)3

)
, (22)

which we solve subject to the initial conditions

X1(0) = 0, X2(0) = 0. (23)

The numerical solution of (21), (22) and (23) is presented in the following
section.
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Figure 1: Penetration depths X1(t) and X2(t) as a function of time t
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Figure 2: Temperatures T1(x, t) and T2(x, t) as a function of space x
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4 Numerical solution

The numerical results shown in Figures 1 and 2 were obtained using the
Fehlberg fourth-fifth order Runge-Kutta method from Maple V Release 5.
Figure 1 illustrates the variation in penetration depths X1(t) and X2(t) with
time for the first 10 seconds for the case of constant boundary temperature
Tb(t) = 26◦C at x = 0 and the following values of the constants:

T10 = 16◦C, T20 = 14◦C, κ1 = 2.2 × 10−5m2s−1, κ2 = 8.3 × 10−8m2s−1,

k1 = 1 × 10−7ms−1, k2 = 1.14 × 10−7ms−1. (24)

We note that κ1 and κ2 are standard values of the thermal diffusivities for
grain and air while the values of k1 and k2 are only crude estimates which
are deduced by estimating from the formulae given in Hill [1], namely s1 =
λ∗k1(δx)2, s2 = λ∗k2(δx)2, where s1 and s2 are probabilities such that 0 ≤
s1, s2 ≤ 1 and λ∗ is the assumed limiting value of (δt)/(δx)2. Ideally in
the future these values might be obtained by using the approximate solution
obtained here along with experimental data. At present such experimental
data is not available. We note that the penetration depth into the air X1(t)
is larger than that through the grain X2(t). The reason for this is that
the specific heat and density of grain is higher than that of air and hence
most of the heat passing through the grain is stored whereas most of the
heat passing through the air is conducted along. For the same parameters
Figure 2 illustrates the variation of temperature with distance at t = 600s.
We note that the difference between T1(x, t) and T2(x, t) is quite noticeable
for distances close to the grain store wall (x = 0).
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5 Conclusions

An understanding of the heat flow in stored grain silos is important from
many practical perspectives, but particularly in following the movement of
insect pests. Here we have proposed using the double-diffusivity model which
takes into account the fact that the rate of heat transfer through the grain
is less than that through the interstitial air surrounding the grain. The ap-
proximate analytical solution obtained via the Heat-Balance Integral Method
gives overall agreement with observations made in the field for penetration
depths and temperature profiles, but exact agreement is not known until
experimental data can be obtained.
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