
ANZIAM J. 42 (E) ppC157–C182, 2000 C157

Flux-limiting and non-linear solution
techniques for simulation of transport in

porous media
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Abstract

The conservation laws governing the flow of liquids in porous me-
dia are often non-linear and have steep fronts that require resolution
in time. It is one of the aims of this work to analyse the use of higher
order spatial weighting schemes and temporal methods for reducing
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numerical dispersion. Another important ingredient in the develop-
ment of an efficient simulator is the treatment of the non-linear system
that results from the discrete analogue of the conservation law. In this
work a vertex-centered finite volume method is used for discretising a
representative conservation law in one-dimension and two non-linear
iterative methods, an inexact full Newton method and the modified
Shamanskii method, are scrutinised. Two case studies are chosen to
highlight the performance of the chosen numerical techniques. At
first, the focus is on the accuracy and efficiency of the spatial weight-
ing methods for a linear advection-dispersion equation and then, a
two-phase flow problem is analysed to gauge the performance of the
non-linear solvers. In both cases, comparisons with exact solutions
are presented.

Contents

1 Introduction C159

2 Mathematical Models C161
2.1 The Linear case . . . . . . . . . . . . . . . . . . . . . . . . C161

2.1.1 Computational Model . . . . . . . . . . . . . . . . C162
2.2 The Non-Linear case . . . . . . . . . . . . . . . . . . . . . C165

2.2.1 Computational Model . . . . . . . . . . . . . . . . C167

3 Results and Discussions C169



1 Introduction C159

4 Conclusions C180

References C181

1 Introduction

The equations that govern the flow of liquids in porous media are ubiqui-
tous in science and engineering. For example, the governing equations find
application in fields as diverse as drying, ground water flow, contamination
and petroleum reservoir engineering. In this work, the transport equations
that govern flow in porous media will be analysed numerically. Two spe-
cific case studies are chosen to benchmark the proposed numerical solution
strategies. In the first case study, saltwater intrusion into aquifers is studied.
Over exploitation of coastal aquifers has resulted in the undesirable situation
of saltwater intrusion, whereby continual loss of groundwater resources re-
duces the related aquifer crop production per hectare. As a result, accurate
knowledge of the salt water concentration distribution evolution within the
aquifer is a key component of current research work in this field [11, 12].
Such knowledge can be obtained using computational methods to simulate
the transport of salt using a simple linear advection dispersion transport
equation. The configuration under investigation here is chosen to ensure
an exact solution can be derived so that the accuracy of the computational
model can be gauged. In the second case study, the simultaneous unsteady
flow of two viscous fluids through a porous medium is investigated. Consider
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as an example the petroleum industry, where one of the fluids would be water
and the other would be one of a variety of hydrocarbon liquids. The diffi-
culty with this problem is the highly non-linear nature of the term arising
from the so-called capillary drive. Fokas and Yortsos[1] obtained a closed
form, analytic solution for one-dimensional flow with capillary drive under
the assumption that the capillary hydraulic functions have a prescribed form.
This analytic solution is used to test the accuracy of the numerical techniques
proposed to solve the same configuration.

In both cases, the vertex centred finite volume method [9] is used to dis-
cretise the one-dimensional transport equation. Various spatial and temporal
weighting schemes are used to approximate the flow and dispersion terms.
These methods range in both accuracy and in levels of sophistication. A
full monotonicity analysis has been carried out on the final discrete analogue
of the transport equations in order to identify the constraints that must be
placed on the distance and time steps for each proposed spatial and tem-
poral weighting method. In particular, flux limiting will be shown to be
an extremely useful technique for reducing numerical dispersion of the con-
centration and saturation fronts. Such techniques have been utilised with
great success in the past for drying [5] and for reducing numerical disper-
sion of the contaminant mole fraction fronts in multi-phase compositional
computational models [2] and [3].

The primary objective for both case studies is to identify the most accu-
rate and efficient temporal and spatial weighting strategy. The final decision
will be based on the method that produces the least absolute error and the
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fastest cpu time. Numerous plots highlighting the performance of all the
proposed numerical methods are exhibited. The final section will summarise
the general conclusions of the research.

2 Mathematical Models

2.1 The Linear case

It can be shown, after numerous simplifying assumptions, that salt water
intrusion into aquifers can be modelled by a single one-dimensional advection
dispersion equation [11] [12]. The relevant partial differential equation in this
case is given as follows:

∂C

∂t
+ Vx

∂C

∂x
= Dxx

∂2C

∂x2
. (1)

Equation (1) is to be solved using a finite volume method that incorporates
flux limiting. C (x, t) represents the concentration of salt in both space and
time. Vx is the velocity field that advects the salt concentration and Dxx

is the dispersivity, which in its simplest form depends on the velocity field.
The boundary conditions are: C(0, t) = C0 and limx→∞ C(x, t) = 0 and the
initial condition is: C(x, 0) = 0. It is assumed in this case that Vx and Dxx

are constants. Furthermore, throughout this section we assume that Vx > 0
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so that the flow will be from the left (x = 0) boundary in the direction of
increasing x.

Taking the Laplace transform of equation (1), the analytical solution can
be shown to be [8]:

C (x, t) = C0

2

[
Erfc

(
x−Vxt

2
√

Dxxt

)
+ e

Vxx
Dxx Erfc

(
x+Vxt

2
√

Dxxt

)]
. (2)

2.1.1 Computational Model

The vertex centred finite volume discretisation method now is applied to
equation (1). In this work, a uniform grid spacing is used, although the
model developed here can cater for nonuniform meshes. After the generation
of the node locations, control volumes are built around the nodes xi. See
Figure 1 where the cell boundaries are located at positions xi+ 1

2
and xi− 1

2

respectively.

The discretisation process proceeds by integrating equation (1) in space∫ x
i+1

2

x
i− 1

2

[
∂C

∂t
+ Vx

∂C

∂x
− Dxx

∂2C

∂x2

]
dx = 0 . (3)

Using the Mean Value Theorem and defining the flux as: J = VxC − Dxx
∂C
∂x

allows equation (3) to be rewritten as

Fi
∼= ∆xi

∂Ci

∂t
+
{
Ji+1/2 − Ji−1/2

}
= 0. (4)
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Figure 1: Schematic of a typical vertex centred finite volume scheme where
the cell faces are located at the mid point of the vertices or nodes.

Integration of equation (4) in time from tn to tn+1 yields:

∆xi

[
Cn+1

i − Cn
i

]
+
[
α
(
Jn+1

i+ 1
2

− Jn+1
i− 1

2

)
+ (1 − α)

(
Jn

i+ 1
2
− Jn

i− 1
2

)]
δt = 0, (5)

where a value of α = 1 corresponds with the fully implicit method, which is
first order in time, and the value α = 1

2
corresponds with the Crank Nicolson

method, which is second order in time. Equation (5) is called the discrete
analogue of the conservation law.

It can be seen from (5) that the fluxes must be approximated at the
control volume (cv) faces i + 1

2
and i − 1

2
, see Figure 1. Dxx

∂C
∂x

is the
dispersion term and VxC is the advection term. The required derivatives
of concentration in the dispersion term are approximated at the cv faces
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using a Taylor series expansion:

(
∂C

∂x

)
i+ 1

2

=
Ci+1 − Ci

δxi+1
and

(
∂C

∂x

)
i− 1

2

=
Ci − Ci−1

δxi
. (6)

The advection term will be approximated using various methods, including
first order upstream, second order averaging and the van Leer Flux limiter [7].
The different approximations of the advection term at the cv faces can be
cast succinctly into two equations that are:

Ci+ 1
2

= Ci +
σR

2
(Ci+1 − Ci) and Ci− 1

2
= Ci−1 +

σL

2
(Ci − Ci−1) , (7)

where the limiters σR and σL are evaluated at the right and left faces of the
control volume respectively. If σR = σL = 0.0, then the one point upstream
spatial scheme is applied, and if σR = σL = 1.0, the second order spatial
averaging scheme is applied. The flux limiters, σR and σL are calculated
using a sensor r, which for the linear case is taken as the ratio of the gradient
of the concentration of the upstream cv face divided by the gradient of the
concentration of the so called second upstream cv face:

(rR)i =

(
dC
dx

)
i− 1

2(
dC
dx

)
i+ 1

2

=

Ci−Ci−1

δxi

Ci+1−Ci

δxi+1

=
δxi

δxi+1

(
Ci − Ci−1

Ci+1 − Ci

)
. (8)

The sensor at the cv left face is defined in a similar fashion. For the case of
the van Leer flux limiter, the limiter used for both cv faces is σ (r) = 2r

1+r
[7].
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Substituting equations (6) and (7) into equation (5) and rearranging such
that the nth time level terms are on the rhs of the equation and the (n+1)th

time level terms are on the lhs, the general equation representing the linear
system to be solved numerically is given by:

(
ασLVx

2
− αVx − αDxx

δxi

)
Cn+1

i−1 +

(
ασRVx

2
− αDxx

δxi+1

)
Cn+1

i+1 +

(
∆xi

δt
+ αVx − αVx

2
(σL + σR) + αDxx

(
1

δxi

+
1

δxi+1

))
Cn+1

i =

(α − 1)
(

VxσL

2
− Vx − Dxx

δxi

)
Cn

i−1 + (α − 1)

(
VxσR

2
− Dxx

δxi+1

)
Cn

i+1 + (9)

∆xi

δt
Cn

i + (α − 1)

(
Vx − Vx

2
(σL + σR) + Dxx

(
1

δxi
+

1

δi+1

))
Cn

i .

Clearly, once all the nodes of the mesh are visited, a tri-diagonal matrix
system arises that can be solved efficiently using the Thomas algorithm for
the salt concentrations at each node.

2.2 The Non-Linear case

The partial differential equation for the one-dimensional, horizontal flow of
two immiscible, incompressible fluids is well known [12]. The non-linear
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partial differential equation under consideration is:

∂S

∂t
− ∂

∂x

[
g (S)

∂S

∂x
+ f (S)

]
= 0. (10)

Initially S (x, 0) = 1 − Swr.

The boundary conditions are:

x = 0,
∂S

∂x
=

α

β
(βS + γ) +

δ

β
(βS + γ)2

x → ∞, S = 1 − Swr.

The functions f(S) and g(S) are defined as follows:

f (S) =
α

β2


 1

1 − Swr + γ
β

− 1

S + γ
β


 and g (S) =

1

(βS + γ)2 (11)

where,

α

β2
= −

(
Sor + γ

β

) (
1 − Swr + γ

β

)
(1 − Swr − Sor)

. (12)

S (x, t) is the wetting phase saturation, Swr = 0.0375 and Sor = 0.15 are
constants called the irreducible saturation of water and oil respectively. f (S)
and g (S) are the capillary-hydraulic properties of the fluid-porous system,
δ = β − α (β − βSwr + γ)−1
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and
γ
β

is a constant ratio.

The analytical solution presented in [1] uses a transformation to lin-
earize (10) to a standard diffusion equation for φ(x̃, t). Once the solution
φ(x̃, t) is determined, then a value of x̃ must be computed for given x and
t values by solving the nonlinear equation φ(x̃, t) = eαx using Newton’s
method. This value of x̃ is used thereafter to enable the saturation to be
evaluated at this particular (x, t) using the expression:

S (x, t) =
1

β

[
αeαx

φ′ (x̃, t)
− γ

]
. (13)

Further details on the numerical scheme used to tabulate the saturation for
various x and t values can be found in [6].

2.2.1 Computational Model

In a similar fashion to that described above for the linear advection disper-
sion equation, the discretization process transforms the non-linear partial
differential equation (10) into a system of non-linear equations.

Fi

(
Sn+1

i−1 , Sn+1
i , Sn+1

i+1

)
= ∆xi

(
Sn+1

i − Sn
i

δt

)
−

α
[
Jn+1

i+ 1
2

(
Sn+1

i , Sn+1
i+1

)
− Jn+1

i− 1
2

(
Sn+1

i−1 , Sn+1
i

)]
+ (14)
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(α − 1)
[
Jn

i+ 1
2

(
Sn

i , Sn
i+1

)
− Jn

i− 1
2

(
Sn

i−1, S
n
i

)]
= 0

Where the flux at the cv right face is defined as:

Jn+1
i+ 1

2

= gn+1
i+ 1

2

(
Sn+1

i − Sn
i

δxi

)
+ fn+1

i+ 1
2

.

The flux at the cv left face is defined in a similar manner and

gi+ 1
2

=

{
g (Si) + σ

2
[g (Si+1) − g (Si)] if Si > Si+1

g (Si+1) + σ
2

[g (Si) − g (Si+1)] if Si < Si+1
(15)

gi− 1
2

=

{
g (Si−1) + σ

2
[g (Si) − g (Si−1)] if Si−1 > Si

g (Si) + σ
2

[g (Si−1) − g (Si)] if Si−1 < Si
(16)

with fi+ 1
2

and fi− 1
2

defined similarly.

This system is solved using an Inexact Newton method [10] whereby the
saturations at all the nodes can be updated at every iteration using the
Newton step. The Jacobian matrix, J, in this case is tridiagonal and the
Newton search direction can be resolved using the Thomas algorithm. Note
that the derivatives required for the Jacobian are generated numerically as
discussed in [4]. Obviously, there is a large computational cost associated
with generating and subsequently solving the Jacobian system. One way to
overcome this computational overhead is to use the Shamanskii method along
with a strategy that enables a decision on when to re-generate the Jacobian
matrix [10].
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Note that two sensors have been examined for the flux limiter in the non-
linear case. The first is identical to that described above, which is based
on the ratio of gradients at the upstream and second upstream points. The
second, which is found to be more accurate than the gradient ratio, concerns
the ratio of the entire flux at the upstream and second upstream locations
(see [5]).

Two Fortran 90 codes were written for each case studied. The results
of the simulations and comparisons with exact solutions, with some plots
to highlight the most important findings for determining the most efficient
computational techniques, will be presented in the next section.

3 Results and Discussions

The linear case monotonicity analysis shows that the fully implicit temporal
method with first order upstream spatial weighting (Fup) has no constraint
associated with it, implying that when different combinations of the parame-
ters such as mesh size, dispersivity, velocity and time step δt are used the ap-
proximated solution remains stable and physical. The meaning of a physical
solution is that no non-physical oscillations appear in the computed profiles
and that the C(x, t) and S(x, t) values always remain positive and less than
C0 and 1 respectively. It is clear from Figure 2 that as the number of mesh
points increases, the accuracy of the approximated solution also increases,
with the smearing of the concentration front diminishing with decreasing



3 Results and Discussions C170

mesh size. This phenomenon is justified by recalling that this method is a
first order process in both time and space. As we investigate this method
more closely, one can see that increasing the number of mesh points, decreases
the absolute error, however the cpu time increases by a factor of two. We
conclude that this method is very costly in terms of computation time for
producing realistic and accurate concentration profiles in comparison with
the exact solution.

Consider now the Crank Nicolson method together with second order spa-
tial averaging(CAve). The monotonicity argument shows that this method
has two constraints associated with it: Pe < 2 and C

Pe
< 1, where Pe is the

Peclet number and C is the Courant number. Note that provided the two
monotonicity conditions are satisfied, the approximated solution will remain
stable and physical however, if either condition is breeched, then oscillatory
behaviour appears in the solution. Observe Figure 3 for the non-physical
behaviour resulting from breeching the monotonicity constraint. Examining
Figure 4, one can see that none of the constraints are breeched and the results
are in good agreement with the analytical solution. It is clear that this later
method is more accurate and more efficient than the first method, however
it too is costly in terms of computation time, and a penalty must be paid in
terms of mesh size and magnitude of the time step due to the monotonicity
constraints.

Next, flux limiting techniques are employed to ensure monotone solutions
for concentration. These methods compute a sensor value that is used in the
van Leer flux limiter for each cv face at every time level. Here the use
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Figure 2: Evolution of concentration fronts using the fully implicit method
and first order upstream weighting (Fup) for 100 mesh points.
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Figure 3: Evolution of concentration fronts using the Crank Nicolson
method and averaging (CAve) for 80 mesh points - Non-physical behaviour.
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Figure 4: Evolution of concentration fronts using the Crank Nicolson
method and averaging (CAve) for 100 mesh points - Physical behaviour.
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Table 1: Results of the four study cases for the linear concentration trans-
port model.

Case Absolute Error cpu time Pe
C
P e

1 0.02457 0.0837 sec 2.0 0.3
2 0.03127 0.0683 sec 2.5 1.92
3 0.001934 0.0772 sec 1.6 0.5
4 0.02752 0.0354 sec 6.66 0.027

of flux limiting is being investigated in terms of accuracy and efficiency in
comparison with the other spatial weighting schemes described in this paper.

Four cases with total simulation time = 2.5 seconds are studied:

1. Fup with Vx = 0.3, Dxx = 0.0015, δt = 0.02, mesh points= 100.

2. CAve with Vx = 0.3, Dxx = 0.0015, δt = 0.2, mesh points= 80.

3. CAve with Vx = 0.4, Dxx = 0.0025, δt = 0.02, mesh points= 100.

4. CVan with Vx = 0.3, Dxx = 0.0015, δt = 0.02, mesh points= 30.

Analysing Figure 5 and Table 1 for the four cases listed it can be concluded
that the use of flux limiting techniques in combination with Crank Nicolson
second order temporal weighting (CVan) require approximately one third of
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the total mesh points used by the fully implicit one point upstream method to
maintain the same accuracy. Furthermore, the flux limiting method achieves
this result in approximately half the cpu time. This finding is important
when developing an efficient and accurate simulator for studying transport
in porous media.

It is well known that Newton’s method provides quadratic convergence
if the initial approximation is sufficiently close to the root of the non-linear
system, however, the modified Shamanskii method, called here the Defini-
tive Newton method, is more efficient in terms of computation because the
Jacobian matrix need not be computed at every iteration [10]. On the other
hand, the Shamanskii method offers only super-linear convergence rates [10].
The parameters used for the two non-linear solvers are β = 5, γ = 0.12, 20
mesh points, print time interval = 0.1 seconds, δt = 0.01 seconds, and total
time = 0.6 seconds. Figures 6 and 7 exhibit the simulation results for the
different spatial and temporal weighting schemes used. Figure 6 depicts the
results for the first and second order methods plotted against the analytical
solution, while Figure 7 shows the results offered by the flux limiting tech-
nique for two different definitions of the sensor (ratio of the gradients and
ratio of the fluxes). Clearly, the flux limiting again is successful in reducing
numerical dispersion of the saturation fronts and when the sensor based on
the ratio of fluxes is used, the results are in good agreement with the exact
solutions. This finding was consistent when different combinations of the
parameters β, or γ were used.

Finally, the overall performance of the Newton method (Table 2) and
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Figure 5: Comparison of concentration fronts using (Fup) and van Leer flux
limiting and the Crank Nicolson method (CVan) for 30 mesh points.
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Figure 6: Exact solution for saturation plotted against the computed results
for Fup and CAve using 20 mesh points.
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Table 2: Results of the four study cases of the non-linear transport equation
using the Inexact Newton method.

Case Absolute Error cpu time Total iterations Jacobians
1 0.12865 4.98 sec 246 246
2 0.01046 4.05 sec 210 210
3 0.03712 6.23 sec 332 332
4 0.0105 9.21 sec 536 536

the Definitive Newton method (Table 3) have been compared via the total
number of non-linear iterations and the total number of Jacobian evaluation.
From those two tables, one notices that the number of iterations required
by the Definitive method is either the same or, slightly higher than, that
required by the Newton method. This finding can be justified because of
the loss of quadratic convergence and probably due to the fact that the non-
linearity of the problem presented here is not strong. On the other hand,
the number of Jacobian evaluations dropped significantly for the Definitive
method and this is where the computational overheads can be reduced.
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Table 3: Results of the four study cases of the non-linear transport equation
using the Definitive Newton method.

Case Absolute Error cpu time Total iterations Jacobians
1 0.12865 3.62 sec 253 194
2 0.01046 3.74 sec 246 187
3 0.03712 5.44 sec 333 274
4 0.01050 7.65 sec 535 420

4 Conclusions

Through the discussion of results and comparison of methods, it was con-
cluded that the Fup technique produces an approximate solution that is al-
ways stable and physical. However, this method requires more than 100
mesh points to capture the physics apparent in the exact solution. In or-
der to remedy this large computational overhead, we implement the method
CAve. This method increases the accuracy as well as the efficiency, however
a penalty is paid due to the monotonicity constraints, which, if breeched, give
rise to non-physical behaviour in the approximated solution. We conclude
that using CVan requires one third of the mesh points, when compared to
the fully implicit method with one point upstream, to maintain the same ac-
curacy and needs only half the cpu time to ensure efficiency. This conclusion
can be drawn for both the linear and non-linear cases. We conclude also that
the flux limiting technique based on using the ratio of fluxes rather than the
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ratio of the gradients for the sensor gives better results in terms of absolute
error and cpu time. Finally, implementing the Definitive Newton method
decreases the cpu time due to the reduction of Jacobian evaluations.
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