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Predicting transit times and flow
concentrations of contaminants through a

metropolitan sewage system
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Abstract

Neural Networks were used to build a model that would predict the
transit times and the levels of trace amounts of radioactive components
at the outlet of a sewage treatment plant. The Neural Networks are
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compared with more conventional approximation methods as a tool
for prediction.
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1 Introduction

The third author challenged the others to examine the potential of using Neu-
ral Networks to model complex dynamic behaviour in environmental systems.
The motivation was to experiment with a black box technique instead of other
physical modelling systems which were considered too costly to develop and
implement. The following problem was considered sufficiently complex to be
of use in evaluating the value of Neural Networks in modelling such systems.

ansto routinely discharges low levels of radionuclides, including tritium
to the Cronulla sewage system under the appropriate authorisation. Under
its Health, Safety and Environment Policy, the Organisation is committed
to undertaking its activities consistent with national and international best
practice. This involves a commitment to continuous improvement.

To effect continuous improvement, it is important for ansto to be in
a position to predict the transit time of the discharge before it reaches the
treatment plant and the levels of radioactivity as it passes through the plant
under a wide range of conditions.

2 Physical system

The sewage system to which ansto is linked is difficult to model as it con-
sists of many conduits, holding locations and intermediate pumping stations
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of differing rates and delay times. In addition to normal household and indus-
trial discharges there are many other environmental and operational factors
that are difficult to account for in a conventional modelling approach. The
complexities of the system were not incorporated directly in the models.

Tritium (as hto) was modelled in this study as it behaves as water and is
not retarded by adsorption on the pipeline walls or by the sewage sludge. The
discharges from the ansto holding tanks are made for periods of between 3
to 7 hours. The tritium concentration is known and constant due to a mixing
process in the tanks prior to discharge. The effluent is discharged into the
sewage system at a reasonably constant rate. In the models it is represented
by hourly varying pulses. The ansto contribution to the system is approx-
imately 4% of the water volume carried by the sewage system. Samples at
the Cronulla Sewage Treatment Plant (cstp) are taken at hourly intervals,
starting before the effluent reaches the plant and the measurements are con-
tinued until the material has passed through. The samples are returned to
the laboratory for tritium assay. Because of possible losses from the system
due to damaged pipes and possible retention of portion of the release in in-
termediate stations, the system is not necessarily conservative. Consequently
no attempt was made to force conservation in the models.

Two empirical modelling approaches were adopted. A neural network
was developed in a typical black box approach to predict the flow times and
concentrations so as to avoid the need for finding a suitable mathematical
approximation function. The network was trained with data recorded from
a limited number of releases from ansto. In a more traditional response
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model, an approximation function was developed and parametrised through
minimisation of least squares error component. As in the case of the neural
network, specific details of the sewage network was not included in the model.

3 Conventional model

With the conventional modelling approach, it is advisable to consider possible
mathematical mechanisms that may describe the physical system. If the time
varying tritium load from the ansto facility is represented by I(t) and the
tritium load measured at the cstp by Cout(t), then an integral equation of
the form

Cout(t) =

∫ t

0

I(s)f(t, s))ds (1)

may be used to relate the two quantities provided the kernel function f(t, s)
can be determined. We persist with a kernel function of this form, however,
the situation may well be more complex for f(s, t, I(s)) may turn out to
be more appropriate form. Equation 1 is a Fredholm Integral equation of
the first kind, where normally the Cout(t) and f(s, t) are known and I(t) is
sought. These problems can be difficult to solve because they are typically
ill-posed [2]. The ill-posed nature of the problem shows up in the recovery of
the kernel functions because the kernel does not always depend continuously
on the data.
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If one fails to recognise the integral equation formulation either in setting
up a neural network solution or in a standard least squares approximation,
then there can be important implications for the solutions obtained.

One may set up an approximation to the physical system or attempt to
discretise the integral equation through

Cout(t) =

n∑
i=0

I(ti)gi(t − tdelay, a
i), (2)

where the inputs are treated as n + 1 pulses at times ti generally on an
hourly basis, when the discharge flow rates were measured and recorded. The
output loads are related to the input loads through the convolution function
gi(t− tdelay, a

i), where tdelay is the time of flight for a particular stage of the
release. In the present model, tdelay is assumed constant for every stage of a
particular release. The functional form is parametrised by sets of parameters
ai.

As it stands, there are a set of n + 1 convolution functions to be deter-
mined for each release used to determine the model. This would require the
computation of a set of parameters ai for each release. As part of the simpli-
fication it is assumed that the same parameters apply for every release, this
corresponds with the decision not to use the f(s, t, I(s)) form of the kernel.
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3.1 Mathematical basis function

The convolution function g(t, ai) of equation (2), is defined with linear hat
basis functions υi

g(t− tdelay) =

r∑
j=1

ajυj(t − tdelay), (3)

based on r nodal points in time T1 < T2 < . . . < Tr. The points are chosen
at r suitable time displacements from t−tdelay . Using t

′
= t−tdelay , the basis

functions υi are defined:

υ1 =
t
′ − t0

T1 − t0
for t

′
< T1, (4)

υj =
t
′ − Tj−1

Tj − Tj−1
for Tj−1 ≤ t

′ ≤ Tj j = 2, 3, . . . , r, (5)

υj =
Tj+1 − t

′

Tj+1 − Tj
for Tj ≤ t

′ ≤ Tj+1, j = 1, 2, . . . , r − 1, (6)

= 0 elsewhere; (7)

υr = 1 − t
′ − Tr

t∞ − Tr

, for t
′
> Tr, (8)

where t0 is the time at which the release of effluent from ansto commences
and t∞ is the time after the effect of any discharge passes through the system.
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In parametrising the model all releases are considered simultaneously and
the parameters are recovered by minimising

p∑
k=1

mk∑
j=1

[
Ck

out−observed(t
k
j ) −

∑nk

i=1

∑r
l=1 Ik(tki )alυl(t

k
j − tkdelay)

σj,k

]2

, (9)

where p different releases are used; for the kth release there are mk obser-
vations at the outfall, nk input observations and a separate delay constant,
tkdelay for each of the p releases. Variance estimate σj,k were not available, so
unit variance was assumed. Minimisation was easily obtained with a quasi-
Newton algorithm. When the model is used in a predictive mode, tkdelay is
assumed to be linearly related to the time when the release originated.

3.2 Stability

The model was first parametrised using r = 7 nodal points. The model was
able to reproduce the observed loads at the cstp and the delay times rather
well. However, a sensitivity test on the parameters was undertaken and as
anticipated, large fluctuations in the recovered parameters were detected for
small perturbations of the underpinning data; as typically experienced in
ill-posed problems of this form. In a move to reduce these fluctuations, two
approaches were adopted. Tikhonov regularisation[2] was implemented and
alternatively, the number of nodal points allowed in the basis functions were
restricted. The second proved effective and for its inherent simplicity was
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the method ultimately adopted. To evaluate the value of the model further,
the sensitivity of each parameter to data error was tested by Monte Carlo
simulations for r = 3, 5 and 7. A 1.0% perturbation, randomly normally
distributed was applied to the input data. There were four releases used in
the parametrisation, hence four values for tdelay were recovered as well as the
spatial parameters a. The standard deviation of each parameter was esti-
mated in the Monte Carlo simulation and each is expressed as a percentage
of the recovered parameter in Table 1, where an ‘x’ in the table indicates the
optimisation algorithm consistently drove that recovered parameter to zero.
For r > 3 the standard deviations of the parameters are so large as to bring
into doubt the reliability of the model, even though the model predictions
match well the observed loads.

4 Neural network model

While the Artificial Neural Networks (anns) [1], [4] approach is similar to the
conventional optimisation approach (in that an empirical model is derived
based on the data acquired from past experience) the advantage is that one
does not need to define the form of the function. Two approaches were
considered in representing the problem using anns. In both approaches the
outputs of the ann are the measured hourly concentrations at the outfall
from the treatment plant. Using this approach, the hourly concentrations at
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Table 1: Standard deviation of each convolution function parameter, ex-
pressed as a percentage of the parameter.

parameter r = 3 r = 5 r = 7
a1 0.3 10. 19.
a2 0. 272. 322.
a3 3.2 5.7 88.
a4 x 3.1
a5 21.9 x
a6 x
a7 31.
tdelay1 0.00 4.2 0.03
tdelay2 0.08 1.5 18.
tdelay3 0.06 0.00 .006
tdelay4 0.09 6.1 6.
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the cstp, Cout(tj), for a given release can be represented as follows:

Cout(tj) = ftj (I; W ), (10)

where ftj are non-linear mapping functions, W is a vector of adjustable
parameters or weights, and I is a vector describing the release into the system.

The measured hourly discharge concentrations form the vector I in the
first approach while parameters describing the discharge concentrations form
I in the second approach. The first approach will not be discussed here, as it
was considered restrictive, in that the duration of a discharge and the time
of day when this occurred were fixed. Increasing the operational hours of
discharges would result in a much larger network and hence a requirement of
a larger training set of observations. In this first approach, while the observed
measurements were able to be learned and reproduced fairly accurately, the
predictive nature of the network was inferior. This is not surprising given the
size of the network (a 8–25 network, with 200 weights to be recovered) and
limited amount of training data available. The second approach is described
in subsequent sections.

4.1 ANN model formulation

The ann model is developed assuming a constant discharge rate and concen-
tration. The inputs to the ann (components of vector I) are the start time
of the release, the duration of the release, the tritium load of the discharge
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and the water discharge rate into the system. The outputs of the ann are
the concentrations at the outfall from the treatment plant.

A feed-forward ann, using supervised learning [5] was considered appro-
priate for this problem and a package [6] was obtained for use. The package
offers a number of activation functions and learning algorithms. A Gaussian
activation function was chosen and the quickprop [3] learning algorithm.

In choosing a suitable ann architecture, a number of experiments were
carried out with hidden layers, however, it was found that adding a hidden
layer did not improve the performance. In most cases, the predictive ca-
pability of the network was improved when the hidden layer was removed;
hence a network without hidden layers was considered. To reduce the num-
ber of weights to be recovered, the measurements at the outfall were limited
between 6 and 21 hours after the release, resulting in a 4–16 network.

4.2 Stability of the ANN model

To evaluate the value of the neural network model, a number of studies were
carried out as described in [5], e.g. limiting the magnitude of the weights and
ensuring that the distribution of weights formed a centred histogram. These
conditions were satisfied, however they are not reported.

In addition, for this comparison, a sensitivity test on the weights was
undertaken as described in Section 3.2, i.e. a 1.0% random normal perturba-
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tion on the input was applied. The standard deviation of each weight was
estimated using Monte Carlo simulation. The standard deviation of each
weight, expressed as a percentage of the recovered weight, varied from 0.1%
to 20.0%, with four outliers of 27%, 63%, 40% and 23%. The larger standard
deviations corresponded to the sections of the curves with sharp rise and fall.

5 Evaluation of the models

To parametrise both models, data from four releases were used, these were
the first four of six sets of ansto data recorded in chronological order. The
remaining two were retained to test the predictive worth of the two models.
The conventional and neural network models obtained for a typical training
set are shown in Figures 1 and 2, where the observed and predicted loads are
displayed. Superimposed on the predicted loads is an estimate of the stan-
dard deviation obtained through a Monte Carlo simulation, where a random
normally distributed perturbation of 10.0% of the release load was applied.
In each case the predictions produced are considered useful. The models give
a reasonable estimate of the time of arrival of the effluent at Potter Point,
the level of the load and the time it takes to pass through the plant.

The predictive power of each approach is shown for the first test release
in Figures 3 and 4. In this test case there were significant differences in the
discharge regime to those used in training the models. Consequently the
models are being tested in a truly predictive mode. The more conventional
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Figure 1: Observed and predicted loads for a release used in developing the
conventional model, standard deviations are shown on prediction.

Figure 2: Observed and predicted loads for a release used in developing the
ann model, standard deviations are shown on prediction.
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Figure 3: Observed and predicted loads for a release used in testing the
prediction of the conventional model, standard deviations are shown on pre-
diction.

model is a superior predictive tool in this instance, due no doubt to the
regularisation forced through the reduced kernel function.

In a second test case, the volume discharged from ansto were consider-
ably greater, however, the results are not shown. Unfortunately in this case,
while the predicted arrival time is satisfactory, the model predicts a shorter
than actual passage through the plant. This is offset with a correspondingly
higher predicted load in the plant for the shorter period, which brings into
question the use of empirically derived predictive models for situations that
have marked differences to those for which they are parametrised. Such a
result is not surprising where the training data is limited. An important
issue is raised which cannot be answered until more release data is available;
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Figure 4: Observed and predicted loads for a release used in testing the
prediction of the ann model, standard deviations are shown on prediction.

is it possible to do better with the current empirical models with additional
training data, or do the models require revision to accommodatechanged cir-
cumstances? In the sewage system there are countless extraneous factors
which have not been accommodated in either approach. Their absence was a
driving factor behind the use of neural networks, however, the ann has not
proven to be superior in this study.
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