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Optimal numerical strategy for unsteady
natural convection in two and three dimensions

Gary B. Brassington ∗

(Received 7 August 2000)

Abstract

Analyses of accuracy and computational cost of finite difference
methods in computational fluid dynamics have illustrated a criterion
for the minimum order for efficient calculations. This criterion favours
the use of higher than second order methods when modelling greater
than two space-time dimensions. These analyses have assumed the
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dominant length scale to be homogeneous throughout the model do-
main. Natural convection in a cavity can exhibit inhomogeneity of
the smallest dominant length scales in identifiable sub-domains. Any
inhomogeneity of this nature is shown to have a significant impact on
the computational efficiency. This extended analysis suggests that an
optimally efficient numerical calculation for unsteady natural convec-
tion requires: a non-uniform grid that complements the distribution of
length scales to obtain a homogeneous non-dimensional grid scale; and
a numerical order equal to or greater than the space-time dimension.
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1 Introduction

Natural convection in a cavity has become one of the classical heat transfer
problems with a large volume of research experimentally, analytically and
numerically. There are several permutations of the cavity problem related
to cavity shape, boundary conditions and fluid properties. Specifically the
problem that is used to motivate the numerical analysis is that of a rectan-
gular cavity that is instantaneously heated and cooled on opposing vertical
walls with the remaining walls thermally insulated.

This problem is dynamically interesting with several regions having unique:
scales; and dominant physical processes. The vertical boundary upon startup,
develops a thermal boundary layer by conduction, the buoyancy force over-
comes viscous friction to develop a two or three dimensional viscous boundary
layer. The buoyant fluid turns the corner and intrudes along the horizontal
boundary as a low Reynolds number gravity current.

At low Rayleigh numbers (Ra), (a parameter important to the cavity
problem [10]) many of the features mentioned reach a quasi-steady, quasi-
two dimensional state over a relatively short time scale. A numerical calcula-
tion of the perturbation field acquires an effectively high order accuracy. As
Rayleigh number is increased there is a transition in behaviour from steady
state to turbulence. The nature of the transition and the properties in a tur-
bulent state are of practical interest to many heat transfer applications. The
perturbation methods are less useful in such regimes and genuinely higher
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than second order calculations can provide some advantage.

The vertical boundary layer scales are reduced as Ra increases. Patterson
and Imberger [10] demonstrate, through a two dimensional analysis, the Ra
dependence for the thermal boundary layer as δT ∼ h

Ra1/4 and τT ∼ h2

κRa1/2

where δT is the length scale, τT is the timescale and h is cavity height. Resolv-
ing these scales in a numerical model can be a significant design constraint.

Recent experimental studies, [14] and [15], have revealed the existence
of three dimensional flow features in the gravity current intrusion, that may
be related to roll structures. The development of a three dimensional cavity
model would have the ability to capture these scales and would be of more
general utility. Three dimensional, high Ra solutions demand the considera-
tion of an optimal strategy.

Sanderson [12] demonstrated the minimum numerical order, m, for op-
timal efficiency should be equal or greater than the number of space-time
dimensions, D, being modelled. Sanderson [12] also concluded that there
was diminishing advantage in numerical orders greater than D + 1. The
argument compared asymptotic behaviour of the accuracy (i.e., truncation
error) and the computational cost. The models for the truncation error and
computational cost to obtain it were based on a homogeneous non dimen-
sional time and grid scale (∆ = ∆t

T
= ∆x

`
), which are the ratio of the time

step or grid scale (∆t, ∆x) with the smallest dominant time and length scale
(T, `). The numerical design principal suggests that for unsteady two and
three dimensional cavity problems D = 3 and D = 4 respectively the nu-
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merical model should be constructed to be minimally third and fourth order
respectively. This is greater than second order, which is typically used.

The natural convection problem has inhomogeneous smallest dominant
length scales throughout the model domain. Armfield [1] developed a second
order stretched coordinate model that concentrated the finest grid scales to-
ward the boundaries. The coordinate system goes some way toward matching
grid scales to dominant length scales. This results in a near homogeneous
non dimensional grid scale for quasi-steady natural convection flows. In these
flows the Armfield [1] model applied to the perturbation of the variables can
be considered near optimal. However, at larger Ra where the field variables
become unsteady and develop three space dimension features the space-time
dimension D is more closely 3 or 4 and this can no longer be considered
optimal.

In Section 2 we define the three dimensional cavity model equations, Sec-
tion 3 discusses the optimal strategy for numerical models applied to prob-
lems with inhomogeneous length scales and Section 4 outlines an approach
that might be used to fulfil the optimal strategy.

2 Equations

Natural convection in a cavity for Newtonian fluids (e.g., water) are well mod-
elled by the Navier-Stokes equation under the Boussinesq and incompressible
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assumptions. The three dimensional governing equations for a Cartesian co-
ordinate system are written as

Du

Dt
= − 1

ρ0
∇p − gk + ν∇2u , (1)

∇ · u = 0 , (2)

DT

Dt
= κ∇2T , (3)

ρ = ρ(T ) , (4)

where u ≡ (u, v, w), p, ρ, T are velocity, pressure, density and temperature,
ν, κ are kinematic viscosity and thermal diffusivity, ∇ ≡ i ∂

∂x
+ j ∂

∂y
+k ∂

∂z
and

the total derivative is, D
Dt

≡ ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

.

An alternative buoyancy term can be derived for a fluid whose density
is a function of temperature only, ρ ≡ ρ(T ), using the coefficient of thermal
expansion β. Assuming that β δT � 1 (β ≈ 1 × 10−5 at T = 278◦K and
β ≈ 7.1 × 10−4 at T = 373◦K, [2]),

β δT ≈ ρ

ρ0

− 1 =
ρ′

ρ0

. (5)

The boundary conditions are given by

u = 0 on x = 0, l, y = 0, b, z = 0, h (6)

∂T

∂y
(x, 0, z) =

∂T

∂y
(x, b, z) = 0 , (7)
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∂T

∂z
(x, y, 0) =

∂T

∂z
(x, y, h) = 0 , (8)

T = T0 +
∆T

2
, x = 0, t ≥ 0; T = T0 − ∆T

2
, x = l, t ≥ 0 (9)

The pressure is composed of: the hydrostatic pressure P0 due to the mean
density ρ0 ≡ ρ(T0); the hydrostatic pressure ph due to density perturbations
ρ′ = ρ − ρ0, which is due to temperature fluctuations; and nonhydrostatic
pressure q. Note there is no pressure due to free surface fluctuations. We can
remove the hydrostatic pressure due to the mean density and substitute the
coefficient of thermal expansion to further simplify the momentum equations.
Following [11] we non-dimensionalise the set of equations to obtain

DU

Dt∗
= −∇̃HP − ∇̃Q + ∇̃2U , (10)

∇̃ ·U = 0 , (11)

DT ∗

Dt∗
=

1

σ
∇̃2T∗ , (12)

where the non-dimensional variables are defined by u ≡ ν
h
U = ν

h
(U, V, W ),

(ph, q) ≡ ρ0ν2

h2 (P, Q), δT = ∆T T ∗, t = h2

ν
t∗, (x, y, z) = h(X, Y, Z), ∇̃H ≡

i ∂
∂X

+ j ∂
∂Y

, ∇̃ ≡ i ∂
∂X

+ j ∂
∂Y

+ k ∂
∂Z

and D
Dt∗ ≡ ∂

∂t∗ + U ∂
∂X

+ V ∂
∂Y

+ W ∂
∂Z

. The
parameter σ = ν

κ
is the Prandtl number.

The hydrostatic pressure is similarly non-dimensionalised to

P =
Ra

σ

∫ 1

Z
T ∗dZ (13)
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where Ra = gβ∆Th3

νκ
.

3 Efficient Strategy

The efficiency, in finite difference, is a comparison of the accuracy of the
model calculation compared with the computational cost to attain it. Sander-
son [12] developed a model to represent this efficiency based on the multipli-
cation of the truncation error ε and the the computational cost C. The trun-
cation error is dependent upon: the numerical order m; the non-dimensional
grid scale ∆ = ∆x

`
; and the numerical scheme. The computational cost is

dependent upon: m; ∆; the numerical scheme; and the space-time dimen-
sion D. The asymptotic behaviour of ε and C as the resolution is increased
(i.e., ∆ → 0) compares the rate of decline in error with the rate of increase in
computational cost. The efficiency can be considered optimal if the decline
in error is dominant and the efficiency, εC, asymptotes to zero or in some
cases a constant.

Provided the numerical scheme is stable and consistent (i.e., ∆ < γ where
γ ∈ (0, 1) is a constant determined by the numerical scheme) the optimal
efficiency occurs when m > D. There is little advantage asymptotically in
using numerical orders greater than D + 1. These conclusions are based
on the assumption of a uniform or homogeneous non-dimensional grid scale
∆ throughout the model domain. In the case of an inhomogeneous ∆, the
condition ∆ < γ may be only just satisfied in some regions while in other
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regions ∆ � γ. This results in a large inhomogeneity in accuracy, which is
a disadvantage as the global accuracy would be dominated by the regions of
lower accuracy forward in time. The non-uniform distribution of accuracy
must be considered sub optimal.

It is proposed that the optimal strategy of any numerical model domain of
interest resolves all points to the same level of accuracy. For finite difference
schemes the accuracy or error is represented by the leading truncation term,
in a Taylor series sense,

ε = α∆m (14)

where α is the proportionality constant. The constant of proportionality is
typically a function of the order and the numerical scheme. Similar to [3] a
simple example of second differences can be used to demonstrate the trunca-
tion error model.

Consider a second difference of a variable φ defined at points uniformly-
spaced in the x-direction. A fourth order stencil for this second difference is
given by

1

∆x2
δ4
xx(φi) =

1

24∆x2
(−φi−2 + 16φi−1 − 30φi + 16φi+1 − φi+2)

=
∂2φ

∂x2

∣∣∣∣∣
i

+
∆x4

180

∂6φ

∂x6

∣∣∣∣∣
i

+ h.o.t. (15)

where δ4
xx represents the coefficients of a second difference stencil in the x-

direction that has a numerical order of four.
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The leading truncation term is the dominant error for a consistent scheme.
To determine the relative magnitude of the error we normalise the leading
truncation term by the second derivative being estimated

ε =
∆x4

180

(
∂6φ

∂x6

∣∣∣∣∣
i

/
∂2φ

∂x2

∣∣∣∣∣
i

)
. (16)

Consider the dominant scales of the system as x = `x′ and φ = Φφ′, then
the non-dimensional error reduces to

ε = α
(

∆x

`

)4

= α∆4 (17)

where α = 1
180

and ∂2φ′
∂x′2

∣∣∣
i
, ∂6φ′

∂x′6

∣∣∣
i
are O(1) by definition.

If the model problem has a single dominant length scale throughout the
entire domain, a homogeneous error can be obtained by a uniform mesh ∆x
and a uniform numerical order. The grid scale ∆x can be determined by the
consistency condition independent of the numerical order. The numerical
order can be determined by the optimal computational efficiency condition,
m = D + 1.

However, if the model has inhomogeneous length scales we need to intro-
duce a non uniform distribution of the grid scales ∆x and/or a non uniform
distribution of numerical order m to obtain a uniform distribution of ac-
curacy ε. In order to determine the efficiency for these problems we will
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simplify the analysis to two methods. The first uses a uniform grid scale ∆x
and employs a non uniform distribution of numerical order to obtain uni-
form accuracy. Higher numerical orders are used for regions that are poorly
resolved ∆ < γ and lower numerical order can be used in regions that are
well resolved ∆ � γ. The second method uses a uniform numerical order
and a non-uniform distribution of grid scales to achieve a homogeneous non
dimensional grid scale ∆. In both cases all ∆ must be minimally resolved,
∆ < γ, so that the numerical solution is consistent. Let us consider the two
approaches separately.

3.1 Order Selective Model

This provides obviously less utility as numerical orders are discrete and there
is diminishing advantage for numerical orders m > D + 1.

Assume that the problem can be characterised by a set of sub-domains
that have length scales

`i ∈ [`S, `L] (18)

where `i represents the smallest dominant length scale of sub-domain i, `S

and `L represent the minimum and maximum of the smallest dominant length
scales of all sub-domains. If we choose a uniform mesh ∆x ∼ const then the
non-dimensional grid scale is represented by

∆ ∈
[
∆x

`L
,
∆x

`S

]
= [∆L, ∆S] . (19)
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We define a homogeneity scale as

ζ =
∆L

∆S

(20)

where ζ � 1 represents low homogeneity or high inhomogeneity and ζ ∼ 1
represents a homogeneous model problem. If ∆x is a constant the homo-
geneity scale reduces to

ζ =
`S

`L

(21)

where ζ ∈ (0, 1]. From the behaviour of numerical stencils the largest non
dimensional grid scale must be bounded to e.g., ∆c = γ < 0.6 [12]. We
use this to select the grid scale of the mesh e.g., ∆x ∼ `S∆c and the non-
dimensional grid scale becomes

∆ ∈ [ζ∆c, ∆c] . (22)

The error also has a range given by,

ε ∈ α(∆mL
L , ∆mS

S ) (23)

where mL and mS represent the numerical order used for the two regions. If
we wish to have a homogeneous error over the model domain we require

∆mL
L = ∆mS

S (24)

or equivalently
mL

mS
=

log10(∆S)

log10(ζ∆S)
. (25)
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Figure 1: The ratio of numerical orders, mL

mS
as a function of homogeneity

of length scale, ζ . The orders mS and mL correspond to the regions whose
non-dimensional grid scale is ∆S and ∆L respectively where ∆L ≤ ∆S.
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The numerical order ratio is plotted in Figure 1 as a function of the
homogeneity scale ζ . The three lines represent the ratio of orders for three
different values of ∆S . All three curves exhibit a near linear relationship,
with the line corresponding to ∆S = 0.5 approximated by

mL ≈ (0.2 + 0.8ζ)mS (26)

for ζ > 0.2. Thus the order of the inhomogeneous regions can be reduced
proportional to the homogeneity ζ to achieve comparable accuracy. If the
non-dimensional grid scale ∆S is reduced, while ζ is fixed, the impact of
homogeneity is reduced and

lim
∆S→0

log10(∆S)

log10(ζ∆S)
→ 1 . (27)

In this case the design restricts the model to be of uniform order, to
achieve comparable accuracy. This can be interpreted as, regardless of the
magnitude of the homogeneity scale provided the least well resolved region
satisfies the condition ∆S � γ the accuracy becomes indistinguishably uni-
form. At sufficiently high resolutions the numerical order should be uniform.

To determine the computational efficiency of the order selective method
we must model the computational cost. The cost model developed by Sander-
son [12] is given by

C = βm∆−D . (28)

This model contains three components. The first component is a propor-
tionality constant that depends on the numerical methods used. The cost
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is optimally directly proportional to the numerical order. Not all numerical
methods have this proportionality however, for all operators of the Navier-
Stokes equations there are optimal methods available (e.g., N-Cycle [9];
quick [8], and full-multi-grid [5, e.g.]). The third component expresses the
proportionality with the total number of grid points in the model domain

where ∆−D =
(

`
∆x

)D
.

The total computational cost of the inhomogeneous length scale problem
is proportional to the sum of the costs of the two regions having the extreme
scales, ∆L and ∆S:

C = β(mL∆−D
L + mS∆−D

S )

= βmS∆−D
S (1 + ζ−D(

log10 ∆S

log10 ζ∆S
)) (29)

See that the more inhomogeneous the model the more expensive the com-
putation of this method. As ∆S is made small the limit of (27) would apply
and the cost would be consistent with (28) the homogeneous case [12]. The
cost component is plotted as a function of log10(∆S) and log10(ζ) in Figure 2.
This demonstrates that the cost grows rapidly as a function of homogeneity
compared with increased resolution.

The efficiency is modelled by the multiplication of error ε, which is ho-
mogeneous α∆mS

S , with computational cost C, (29),

εC = αβmS∆
(mS−D)
S

(
1 + ζ−D

(
log10 ∆S

log10 ζ∆S

))
. (30)
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Let us consider that for any given model the dominant scales are deter-
mined by the problem of interest and are independent of the numerical model
i.e., ζ ≈ const. This is a good approximation for natural convection in a cav-
ity at moderate Ra prior to the transition to turbulence. Note however, there
is evidence related to high Reynolds number flows that fractality occurs [13].
In these cases the dominant scales cannot be considered independent of the
model resolution.

The asymptotic behaviour of efficiency, (30), as the resolution is increased,
∆S → 0, is given by

lim
∆S→0

εC =


∞, mS < D ,

αβmS(1 + ζ−D( log10(∆S)
log10(ζ∆S)

)), mS = D ,

0, mS > D .

(31)

If the problem is inhomogeneous we can afford to use the lower orders for
the well resolved regions without sacrificing efficiency provided the order of
the largest non-dimensional scale ∆S is performed at an order mS > D.

Note that for any fixed value of ζ the inhomogeneity can contribute sig-
nificantly to the cost but if mS > D the accuracy for that cost should be
maximised.

Consider the case where the resolution is fixed in the sense that ∆S =
∆c < γ for the smallest scale but we decrease the homogeneity ζ . In respect
to the cavity model this relates to changing the Ra such that increasing Ra
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decreases homogeneity ζ . The asymptotic behaviour of efficiency as homo-
geneity reduces, ζ → 0, with ∆S fixed is given by

lim
ζ→0

εC → ∞ . (32)

In this case, although the higher order methods, m = D + 1, provide
greater efficiency the reduction in homogeneity can dominate the cost. As a
consequence the magnitude of efficiency is also dominated when a uniform
mesh is used over the entire domain and ∆S is fixed.

In practice, the homogeneity and the resolution ∆S are finite and the
efficiency is some way from the asymptotic results. The efficiency is surface
plotted as a function of numerical order and non-dimensional grid scale ∆S

for four different homogeneity values, ζ ≡ (1, 1E − 1, 1E − 2, 1E − 3). The
numerical order is restricted to the discrete values, m ≡ [2, . . . , 6] and the
non-dimensional grid scale values are given by ∆S ≡ [0.1, 0.2, . . . , 0.9]. The
values of min(∆S) = 0.1 represents a practical value of resolution since we
would like to restrict the total computation time.

The four surface plots in Figure 3 demonstrate that given the non-dimen-
sional grid scale satisfies the condition ∆S < 0.6, there is a clear efficiency
gain obtained by using increased numerical orders. In all cases when the
numerical order is less than the space-time dimension there is a loss of effi-
ciency as the resolution is increased. In other words there is an impractical
increase in cost for the relatively small gain in accuracy. The converse is true
for m > D.
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Figure 3: The efficiency εC as a function of numerical order m and non-
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As the homogeneity is reduced the total magnitude of the efficiency func-
tion is significantly increased. This behaviour, consistent with (32), demon-
strates that modelling an inhomogeneous problem with a uniform mesh must
be considered sub optimal even if the accuracy is greater than the dimension.

3.2 Resolution Selective Model

This approach uses a non-uniform distribution of mesh points that matches
the distribution of dominant length scales that occur in different regions
throughout the model. Assume that the problem can be characterised by a
set of sub-domains that have dominant length scales `i

`i ∈ [`S, `L] . (33)

Choose a coordinate system so that the non-dimensional grid scale is approx-
imately uniform throughout the entire domain

∆ =
∆xS

`S
≈ ∆xL

`L
. (34)

In this case the error is well modelled by (14) and there is no appearance
of the homogeneity scale. The computational cost is proportional to the
order m but is also proportional to the number of grid points. In this case
the number of grid points can be approximated by(

`S

∆xS

)−D

+

(
`L

∆xL

)−D

≈ β∆−D . (35)
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For this case the computational cost is identical with the equation de-
veloped by Sanderson [12], (28). Combining the truncation error and com-
putational cost for a model with a non-uniform distribution of mesh points,
the efficiency function εC is independent of the homogeneity scale ζ . The
asymptotic behaviour is identical with that of a problem that has homoge-
neous length scales. This is a desirable strategy for natural convection in a
cavity as efficiency of the model is independent of the Ra.

For finite non dimensional grid scale ∆S, the efficiency is consistent with
Figure 3a and [12]. This figure demonstrates that if m < D, increasing the
resolution obtains increased accuracy inefficiently. However, for m > D the
increase in resolution improves accuracy in an efficient way.

We can now express the optimal numerical strategy for a general problem
with inhomogeneous length scales and dimension D. The coordinate system
should be distributed so that the non-dimensional grid scale is uniform and
∆ < γ. Also the numerical order of the model should be greater than the
space-time dimension i.e., m = D + 1.

In the time dimension, the time step ∆t may be more restricted due
to stability and require ∆t

T
� ∆ where ∆ represents the non-dimensional

grid scale of the rest of the model. This permits the numerical order of the
time integration scheme to be relaxed to again produce a homogeneous ε
throughout the domain [4]. It should be noted that this is not optimal but
due to the stability restriction this may be unavoidable.
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4 Method of Solution

The efficient computation of the cavity model in three and four space-time
dimensions requires a numerical order m ≥ D, which is higher than second or-
der. The inhomogeneity of the length scales requires the use of a non-uniform
distribution of grid scales that result in a homogeneous non dimensional grid
scale.

Non uniform meshes can be constructed by, stretched coordinates [1],
coordinate transforms, [6], or nesting [7, e.g.]. The stretched coordinates
and transform coordinates can be used to good effect in the cavity problem
as the smallest scales, for low Ra, are permanently confined to the boundary
layer and the mesh can be fixed.

Stretched coordinates have been successfully applied to the two space
dimension cavity at second order [11]. However higher than second order
stencils can be problematic particularly for a control-volume mesh. Coor-
dinate transforms introduce additional operators to the system of equations
but are then able to take advantage of uniform mesh stencils. The model
accuracy is sensitive to the calculation of these additional operators but in
the cavity these terms need only be calculated to high accuracy once.

There are several permutations to a nesting algorithm, however for accu-
racy to be maintained the nesting would need to be two-way communicating.
The nesting involves the embedding of a higher resolution model in a sub-
domain of a larger scale model. The higher resolution model uses the large
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scale model to specify boundary conditions and the higher resolution values
are integrated and injected into the large scale model. The nested algorithm
has the advantage of being adaptive and of more general utility as Ra is in-
creased and the flows become turbulent. The full specification of the nesting
algorithm is not detailed but the efficiency argument Section 3 suggests that
the accuracy can be assured if the nesting boundary is located in a region of
the larger mesh model where ∆ � 0.6. Both the nested and coordinate trans-
form methods permit the use of uniform mesh stencils, which is a distinct
programming advantage for higher than second order.

5 Conclusion

A model of accuracy and computational cost of a finite difference model has
been used by Sanderson [12] to demonstrate that for efficient computation
the numerical order should be greater than the space-time dimension of the
model. In the context of a problem with inhomogeneous length scales e.g.,
natural convection in a cavity, the above conclusion was reaffirmed but with
the additional criterion that the non-dimensional grid scale needs to be ho-
mogeneous throughout the model domain to be considered optimal.

Achieving a high order non-uniform mesh model can pose a challenge.
The method advocated here is for the use of a uniform mesh model that
takes advantage of the symmetric stencils and apply this model within either
a coordinate transform or nested model context.
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The problem of interest in this analysis is natural convection in a cav-
ity however, the analysis applies more generally to any problem that exhibit
inhomogeneity of the smallest dominant length scales throughout the model
domain. For cavity problems, the unique sub-domains are largely spatially
and temporally invariant and a non-uniform grid can be fixed, which is a sig-
nificant programming advantage. For problems that exhibit inhomogeneity
that is spatially and temporally variant an adaptive gridding should also be
designed with a numerical order, m = D + 1.
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