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A numerical model of a towed cable-body
system
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Abstract

In this paper, the motion of a body towed by an aircraft on a long
thin elastic cable is modelled. The motion of the cable is described by
a system of partial differential equations, and a six degree of freedom
model used for the towed body. The partial differential equations
governing the motion of the cable-body system are solved numerically
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by discretising them using the finite difference method. The resulting
system of non-linear equations is solved iteratively at each time step.

The numerical scheme, which allows for the deployment or retrieval
of the cable, is briefly described and results presented for several ma-
noeuvres of the towing aircraft.
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1 Introduction

Towed bodies are frequently deployed from aircraft on thin cables up to
several kilometres in length. These bodies can be used as targets or may
be part of the aircraft’s defence system by acting as decoys for missiles.
Accurate prediction of the position of the body and the tension in the cable
as the aircraft manoeuvres is needed, not only for safety considerations, but
also in order to design the various components of the towing system.

Several approaches have been used to model towed cables. The motion of
the cable can be described by a system of partial differential equations [1], or
the cable can be considered either as a number of inextensible rods connected
by frictionless hinges [7] or as “lumped” masses connected by inextensible
links having no mass [2]. The first approach was used in [4] to model a body
being towed behind an aircraft by an elastic cable, but only a simple model
of the towed body was used. This paper extends that work by incorporating
a six degree of freedom model of the towed body.

As before the cable is assumed to be homogeneous and have a constant
diameter in its unstretched state. The model allows deployment or retrieval
of the cable while the towing aircraft follows a prescribed manoeuvre in three
dimensions.
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2 Mathematical Model

The aircraft is assumed to be at the origin of a fixed reference frame (x, y, z)
at time t = 0, with the x axis pointing in the direction of the horizontal
component of the initial velocity and z points vertically downwards. Unit
vectors in the x, y and z directions are denoted by (i, j, k) as shown in
Figure 1. An orthonormal set of unit vectors (t, n, b) is defined at each
point on the cable with t tangential to the cable and n normal to the cable
and lying in a vertical plane. The orientation of the local system a distance
s along the unstretched cable from the towed body end at time t is described
with the aid of the Euler angles θ(s, t) and φ(s, t). Rotating the local axes
through an angle φ about b then rotating them through θ about n gives
n=k, b=j and t= −i.

With T (s, t) as the tension and ut(s, t), un(s, t) and ub(s, t) as the velocity
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Figure 1: The three reference frames used in the model.
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components, the governing equations can be written as
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∂ub

∂s
=

−µeub

T (1 + eT )

(
ut − un tanφ

)∂T
∂t

+
µ

T

(
ut − un tanφ

)∂ub

∂t

− (1 + eT ) cosφ

[
µ

T (1 + eT )
(ut − un tanφ)2 − 1

]
∂θ

∂t

+
(ut − un tanφ)

T
fb, (6)

where

ft = µg sinφ− 1

2
ρπd0

√
1 + eTctut|ut|,

fn = −µg cosφ+
1

2
ρd0

√
1 + eTcnun

√
u2

n + u2
b ,

fb =
1

2
ρd0

√
1 + eTcnub

√
u2

n + u2
b ,

and µ is the mass per unit length of the unstretched cable, ρ is the air density,
d0 is the diameter of the unstretched cable, ct and cn are the tangential
and normal drag coefficients of the cable, g is gravitational acceleration,
and e = (EA)−1 where E is Young’s modulus of elasticity and A is the
cross-sectional area of the unstretched cable. These six partial differential
equations ensure conservation of linear momentum and compatibility of the
displacements of the cable; their derivation may be found in [5].

The cable’s velocity at the aircraft end (s = L, where L is the unstretched
length of the cable) is the sum of the velocity of the aircraft and the cable
deployment or retrieval velocity uc(t). If the aircraft’s velocity components
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in the i, j and k directions are denoted by U, V and W respectively, then

ut = −U cos θ cosφ− V sin θ cosφ+W sin φ+ uc,

un = U cos θ sinφ+ V sin θ sin φ+W cosφ,

ub = −U sin θ + V cos θ.

The variables that define the motion of the towed body are expressed in
terms of body axes x′y′z′ which move with the towed body. The origin of
the body axes is located at the centre of mass of the towed body, the x′ axis
is aligned with the centreline and points forward, while the y′ axis lies in a
horizontal plane and the z′ axis lies in a vertical plane when the aircraft is
flying on a straight and level course at constant speed and cable-body system
is in its equilibrium position. The orientation of the towed body is defined
by the Euler angles ϑ, ϕ and ψ, the pitch, roll and yaw angles respectively,
which relate the body axes to the fixed axes. To obtain the orientation of
the body axes from the fixed axes requires a rotation of ψ about the z′ axis,
followed by a rotation of ϑ about the y′ axis then ϕ about the x′ axis.

The equations of motion of the towed body arise from the conservation of
both linear and angular momentum. The components of velocity are denoted
by u, v and w and the rates of rotation about the axes are denoted by p, q
and r. The following expressions for the time derivatives of state variables
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can be derived from the equations of motion (see [6]):
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Here m is the mass of the towed body, X, Y and Z are the components
of aerodynamic force, L,M and N are moments about the body axes and
Ixx, Iyy, . . . are second moments of inertia about the indicated axes. The
components of force and the moments are calculated by adding perturbations
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to the steady state values and any contributions from the cable. For example,

X = fAx −
1

2
ρU2

1SCD1 + T cos (θ(0, t) − ϑ)

where fAx is the perturbed force in the x direction and U1 and CD1 are the
speed and the drag coefficient at steady state flight conditions. Perturbations
to the forces and moments are found using a linear approximation (see [6]).

3 Numerical Scheme

The six coupled partial differential equations that govern the motion of the
cable are discretised using the finite difference method. The cable is divided
into a number of elements whose length increases geometrically from the
towed body end (where the curvature is greatest) to the aircraft end. An
implicit approximation that is second order in both space and time was first
developed in [4] for motion of an inelastic cable constrained to move in a
vertical plane. Details of the scheme applied to equations (1) to (6) may be
found in [5].

Equations (7) to (15) are discretised using the backward Euler method.
Using the notation that variables without a superscript are approximations
at some time tr = r∆t and those with a superscript of ‘+’ are approximations
at time tr+1 = tr + ∆t, Equation (7) is approximated by

u+ − u

∆t
= r+v+ − q+w+ − g sinϑ+ +

X+

m
.
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The cable end and the towed body must move at the same velocity.
Equating expressions for the velocity components of each in the fixed co-
ordinate system gives


u cosϑ cosψ + cosϕ(w cosψ sinϑ− v sinψ) + sinϕ(v cosψ sin ϑ+ w sinψ)

(u cosϑ+ v sinϑ sinϕ) sinψ + cosϕ(v cosψ + w sin ϑ sinψ) − w cosψ sinϕ
−u sinϑ+ cos ϑ(w cosϕ+ v sinϕ)




=


 −ut1 cos θ1 cosφ1 + un1 cos θ1 sinφ1 − ub1 sin θ1

−ut1 sin θ1 cosφ1 + un1 sin θ1 sin φ1 + ub1 cos θ1
ut1 sinφ1 + un1 cos φ1


 ,

where the subscript 1 denotes values at the first node (s = 0). This equation
is enforced at each time level.

The discretisation of the governing equations together with the equations
for the velocity at the cable ends form a system of non-linear equations that
must be solved at each time step. This system is solved iteratively using
Broyden’s method [3].

The simulation of the cable–body system is started with the aircraft flying
in a straight line at a constant altitude and the cable and towed body in their
equilibrium positions. First the equilibrium position of the towed body is
found. Expressions relating T , θ1 and ψ at equilibrium are solved by a fixed
point iterative scheme with under-relaxation. Numerical experiments showed
that rapid convergence was achieved for a relaxation parameter of 0.38. Once
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the equilibrium orientation of the towed body has been found, the steady
form of equations (1) to (6) are integrated to determine the equilibrium
position of the cable.

4 Results

The following results were calculated for a cable of diameter d = 2mm with
tangential drag coefficient ct = 0.01 and normal drag coefficient cn = 0.5. A
mass per unit length of cable of µ = 30g/m and the value e = 1.516 × 10−6

(corresponding to a steel cable) was used. The mass of the module was m =
31kg. The air density was assumed to be ρ = 1.22kg/m3. Experimentation
showed that a ratio of 1.15 for the lengths of adjacent elements gave the best
accuracy. A time step of ∆t = 0.1s was used as any further reduction made
little difference to the results.

The first simulation is for the aircraft in a circular flight. The cable is
initially 500 metres long. Figure 2 shows the path taken by the aircraft and
the module in the xy plane. The dotted line represents the path taken by
the module and the other the aircraft’s flight. Initially the aircraft is at (0, 0)
moving with velocity 150m/s in the direction of the x-axis and towing the
module from a cable of length 500 metres. At time t = 10 seconds, the cable
payout is initiated with a payout speed which increases linearly to 10m/s
after 10 seconds. At the same time, the aircraft, now positioned at (1500, 0),
commences a turn. As shown in the figure, the module travels outside the
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Figure 2: Aircraft path (solid line) and module path (dotted line) during
deployment of cable.
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path taken by the aircraft. The payout velocity is maintained at 10m/s for
t between 20 and 110 seconds. When the circle is completed at time t = 94
seconds, the aircraft continues to fly in a straight line. At time t = 110
seconds, the payout velocity of the cable is decreased linearly to zero at time
t = 120 seconds. The final length of the cable is 1500 metres. The number
of nodes on the cable was initially 31. At the end of the payout, the number
of nodes increased to 39.

Figure 3 shows the tension at each end of the cable. Initially, the tension
is slightly higher at the aircraft end than at the module end. As the cable
is payed out, the tensions initially decrease, then fluctuate, and as the cable
becomes longer, the tension at the aircraft end increases. The tension at the
module end settles down to a constant value. Fluctuations in the tensions
are observed when the aircraft begins to fly in a straight path. As the cable
is slowed, the rate of change in tension at the aircraft end increases until the
payout ceases. Once the payout of the cable is stopped, the tensions quickly
reach their equilibrium values. The oscillations at t = 10s and t = 94s result
from the discontinuity in acceleration when the “aircraft” changes from a
straight path to a circular path and vice versa.

The next manoeuvre (see Figure 4) is the same except at t = 10 seconds,
as the plane begins to turn, it starts to ascend. After 1 second, the rate of
ascent reaches 5m/s and this value is maintained for the rest of the simula-
tion. The tensions graph are shown in Figure 5. The effect of the aircraft
climbing is minimal, the tensions being very similar to those from the earlier
manoeuvre.
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Figure 3: Tension in cable at aircraft end (solid line) and module end
(dotted line) during manoeuvre shown in Figure 2.
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Figure 4: The aircraft path (solid line) and module path (dotted line)
during deployment of the cable.
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Figure 5: The tension in the cable at the aircraft end (solid line) and module
end (dotted line) during the manoeuvre shown in Figure 4.



4 Results C379

Figure 6 shows a manoeuvre which involves retrieval of a 500m long cable.
Initially, the aircraft is flying at a constant speed of 150m/s. At time t =
10 seconds, the aircraft commences to turn and climb. The rate of climb
increases from 0 to 5m/s over a period of one second, then is maintained at
5m/s for the rest of the manoeuvre. The aircraft completes a semicircle at
time t = 52 seconds and returns to straight flight, on an opposite heading
than at the start of the manoeuvre. The retrieval of the cable commenced
at time t = 10 seconds. The retrieval velocity is

uc(t) =




−7.5 {1 − cos [π(t− 10)/10]} 10 ≤ t < 20
−15 20 ≤ t < 30
−7.5 {1 − cos [π(t− 40)/10]} 30 ≤ t < 40
0 otherwise.

This results in 300m of cable being reeled in.

Figure 7 shows the tension for this manoeuvre. Initially, the tension
oscillates insignificantly before reaching a steady value. When the aircraft
commences its turn and the retrieval begins, the tension at both the aircraft
and module increases dramatically. At t = 20 seconds, the rate of retrieval
becomes steady and we observe tension at the aircraft end drops quickly
while at the module end the rate of decrease is much smaller. As the retrieval
velocity is reduced to zero the tensions level off. The tensions at both ends
of the cable have some large fluctuations which begin at time t = 52 seconds,
when the aircraft ceases its turn, before settling down to a lower value. The
module oscillates from side to side of the aircraft’s path after the aircraft
straightens up (see Figure 8), but the period of the oscillation is much greater
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Figure 6: The aircraft path (solid line) and module path (dotted line)
during retrieval of the cable.
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Figure 7: The tension in the cable at the aircraft end (solid line) and module
end (dotted line) during the manoeuvre shown in Figure 6.
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Figure 8: Expanded view of a section of the aircraft path (solid line) and
module path (dotted line) displayed in Figure 6.
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than the period of the oscillation of the tensions; the latter oscillation is again
caused by the discontinuity in the acceleration of the aircraft end of the cable.

5 Conclusions

The incorporation of a six degree of freedom model of the module has im-
proved the accuracy of the model of a towed cable–body system. At present
the path of the aircraft has to be defined by specifying the aircraft’s velocity
components as functions of time, and any discontinuity in acceleration re-
sults in oscillations of the tension in the cable. In the future it is planned to
incorporate a model of the aircraft. This will not only eliminate the spurious
oscillations, but will also allow interaction between the aircraft and the towed
system.
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