
ANZIAM J. 42 (E) ppC385–C399, 2000 C385

Parallelization of a finite element surface
fitting algorithm for data mining

Peter Christen∗ Irfan Altas† Markus Hegland∗

Stephen Roberts∗ Kevin Burrage‡ Roger Sidje‡

(Received 7 August 2000)

∗ Computer Science Laboratory, RSISE, Australian National University, Canberra,
ACT 0200, Australia. mailto:Peter.Christen@anu.edu.au,
mailto:Markus.Hegland@anu.edu.au and mailto:Stephen.Roberts@anu.edu.au
respectively.

† School of Information Studies, Charles Sturt University, Wagga Wagga, NSW 2678,
Australia. mailto:ialtas@csu.edu.au

‡ Department of Mathematics, University of Queensland, St. Lucia, QLD 4072,
Australia. mailto:kb@maths.uq.edu.au and mailto:rbs@maths.uq.edu.au
respectively.

0See http://anziamj.austms.org.au/V42/CTAC99/Chr1 for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:Peter.Christen@anu.edu.au
mailto:Markus.Hegland@anu.edu.au
mailto:Stephen.Roberts@anu.edu.au
mailto:ialtas@csu.edu.au
mailto:kb@maths.uq.edu.au
mailto:rbs@maths.uq.edu.au
http://anziamj.austms.org.au/V42/CTAC99/Chr1


Contents C386

Abstract

A major task in data mining is to develop automatic techniques
to process and to detect patterns in very large data sets. An impor-
tant data mining technique is multivariate regression, and an essential
sub task is the estimation of interaction surfaces, i.e. the estimation
of functions of two variables. Thin plate splines provide a very good
method to determine an approximating surface. Obtaining standard
thin plate splines requires the solution of a dense linear system of
equations of order n, where n is the number of observations. Stan-
dard thin plate splines may not be practical, because the number of
observations for data mining applications is often in the millions. We
have developed a finite element approximation of a spline that can
handle data sizes with millions of records. The resolution of the finite
element method can be chosen independently from the number of ob-
servations. The observation data is read from secondary storage once,
and does not need to be stored in memory. In this paper, we present
a first parallel implementation of this method in an mpi environment.

Contents

1 Introduction C387

2 Surface Fitting Algorithm C389

3 Solution of Linear Systems C390



1 Introduction C387

4 Implementation and Parallelization C392

5 Tests Results from Parallel Implementation C395

6 Conclusions C397

References C398

1 Introduction

In the last decade, there has been an explosive growth in the amount of
data being collected. The computerisation of business transactions and use
of bar codes in commercial outlets have provided businesses with enormous
amounts of data. Revealing patterns and relationships in a data set can im-
prove the goals, missions and objectives of many organisations. For example,
sales records can reveal highly profitable retail sales patterns. As such, it is
important to develop automatic techniques to process and to detect patterns
in very large data sets [1]. This process is known as Data Mining.

Data mining techniques are used to spot trends in data that may not
be easily detectable by traditional database query tools that rely on simple
queries to produce results. Data mining tools reveal hidden relationships
and patterns as well as uncover correlations that are not detected by simple
database queries [3].



1 Introduction C388

An important technique applied in data mining is multivariate regres-
sion which is used to determine functional relationships in high dimensional
data sets. A major difficulty which one faces when applying nonparametric
methods is that the complexity grows exponentially with the dimension of
the data set. This has been called the curse of dimensionality. Additive and
interaction splines can be used to overcome this curse [4]. In the case where
interaction terms in the splines are limited to order two interactions, the
model consists of a sum of functions of one or two variables and the fitting
problem thus is reduced to fitting a sum of functions of two variables. One
could call this problem surface fitting of a set of coupled surfaces. As such,
surface fitting is an important technique for the data mining of large data
sets.

We have developed a generic surface fitting algorithm that can han-
dle data sizes with millions of observations. The algorithm combines the
favourable properties of finite element surface fitting with the ones of thin
plate splines. An overview of this thin plate spline finite element method
(tpsfem) is presented in Section 2. We discuss the numerical solution of the
linear equations arising from the tpsfem in Section 3. In order to interac-
tively analyse large data sets, a considerable amount of computational power
is needed in most cases. High-performance parallel and distributed comput-
ing are crucial for ensuring system scalability and interactivity as data sets
grow considerably in size and complexity. The parallel implementation of
the algorithm is presented in Section 4 whereas first test results are given in
Section 5. Conclusions and future work are discussed in Section 6.



2 Surface Fitting Algorithm C389

2 Surface Fitting Algorithm

Surface fitting and smoothing splines techniques are widely used to fit data.
We have developed a surface fitting algorithm, tpsfem, that can be used for
various applications such as data mining and digital elevation models.

The tpsfem algorithm can handle data with millions of records. It com-
bines the favourable properties of finite element surface fitting with the ones
of thin plate splines. The standard thin plate spline is the function fα that
minimises the functional

Mα(f) =
1

n

n∑
i=1

[
f

(
x(i)

) − yi

]2

+ α

∫
Ω

[(
∂2f(x)

∂2x1

)2

+ 2

(
∂2f(x)

∂x1∂x2

)2

+

(
∂2f(x)

∂2x2

)2
]

dx

where the observations of the predictor and response variables, respectively
are given by x(i) ∈ R2, and y(i) ∈ R for i = 1, . . . , n. An appropriate
value for the smoothing parameter α can be determined by generalised cross
validation. The smoothing problem will be solved with finite elements.

In order to reduce the complexity of the problem we suggest that very
simple elements are used, namely, tensor products of piecewise linear func-
tions. For these functions, however, the required second derivatives do not
exist. Thus one has to use a non-conforming finite element principle and a



3 Solution of Linear Systems C390

new functional is introduced which only consists of second derivatives. The
interested reader can refer to [2, 5, 6] for a detailed derivation of the method.

After some manipulations and discretization [6] one gets the following
linear system of equations which describes the finite element solution of the
minimisation problem:


αA 0 0 0 −BT

1

0 αA 0 0 −BT
2

0 0 M F A
0 0 F T E 0

−B1 −B2 A 0 0






u1

u2

u0

c
w


 =




0
0

n−1NT y
n−1XTy

0


 (1)

The symmetric positive definite matrix A is the finite element approximation.
c = [c0 c1 c2]

T ∈ R3 is constant and w is the Lagrange multiplier vector.
u0 is a discrete approximation to fα whereas u1 and u2 are the discrete
approximation of the first derivatives of fα.

3 Solution of Linear Systems

The size of the linear system (1) is independent of the number of observa-
tions, n. The observation data are visited only once during the assembly of
the matrices M , E and F and the vectors Ny and Xy in (1). Thus, the
time complexity to form (1) is O(n). If the number of nodes in the finite



3 Solution of Linear Systems C391

element discretization is m, the size of (1) is 4m + 3 which is independent of
n. All sub-systems in (1) have dimension m, except the fourth one which has
dimension 3. Thus, the total amount of work required for the tpsfem algo-
rithm is O(n) to form (1) plus the work required to solve it. The sequential
time can be modelled as

Ttotal = n∆Tassembly + Tsolve(m)

with ∆Tassembly the time to process one single data point and Tsolve(m) the
solver time, which depends upon the size of the linear system.

It can be seen that the system matrix (1) is symmetric indefinite and
sparse. One of the efficient techniques to solve such systems is the Uzawa
algorithm [7, 8]. We have applied a modified version of the Uzawa algorithm
to (1). If several adjacent elements do not contain any observation points,
the matrix M in (1) becomes singular, hence, the Uzawa algorithm becomes
inapplicable. In order to avoid this problem we make a block row interchange
of the third and fifth block row of the system (1). Then, the variant of the
Uzawa algorithm used here has the form of a block Gauss-Seidel iteration
and can be written as


αA 0 0 0 0
0 αA 0 0 0

−B1 −B2 A 0 0
0 0 F T E 0
0 0 M F A







uk+1
1

uk+1
2

uk+1
0

ck+1

wk+1


 =




BT
1

BB
2

0
0
0


wk +




0
0
0

n−1XTy
n−1NT y


 (2)



4 Implementation and Parallelization C392

This system requires the solution of four equations with matrix A for each
iteration step. The convergence behaviour and some variations of this ap-
proach are discussed in [6]. In the next section, we discuss the parallel im-
plementation.

4 Implementation and Parallelization

The original implementation of the tpsfem algorithm has been done in Mat-

lab [5, 6]. We have chosen C and mpi [9] for a second implementation. The
main purpose of this implementation is to analyse parallelization aspects of
the tpsfem algorithm and increase performance. The matrices needed in (2)
are sparse and consist of nine diagonals with non-zero elements. As matri-
ces M and A are symmetric, only the diagonal and upper part have to be
stored. Matrices B1 and B2 are non-symmetric, so all nine diagonals are
stored. We have chosen a diagonal storage data structure, consisting of a
two-dimensional array with m rows and 5 or 9 columns, respectively. Each
of the columns contains one of the matrix diagonals with non-zero elements.
With this packed data structure, good data locality and thus good cache
utilization can be achieved on risc machines. The matrix F is of dimen-
sion m × 3 and matrix E is a small 3 × 3 matrix. The dot product and
vector addition (daxpy) implementations use loop unrolling for better risc

pipeline usage.

As the data sets in data mining applications can be quite large, file read-



4 Implementation and Parallelization C393

ing and assembly of the matrices M , F and E as well as the vectors Ny and
Xy are time consuming steps. Fortunately, in the tpsfem algorithm the
data has to be read only once and the process of assembling the matrices can
be parallelized easily. First, the data file is split equally into P smaller files
by a cyclic distribution. These files then can be processed independently by
P processors. Each of them assembles local matrices and vectors. After the
assembly, these local matrices and vectors have to be collected and summed
to get the final matrices M , F , E and vectors Ny and Xy. The amount of
data to be communicated depends on m, but not on the number of observa-
tions n. An almost ideal speedup can be achieved for the assembly process,
if the amount of communicated data is small compared to the number of
observations to process from file. The assembly of the matrices A, B1 and
B2 only depends on the matrix dimension m and takes much less time than
the assembly of M , F and E.

As the coefficient matrix A of the four large sub-systems is symmetric
positive definite, they can be solved with the Conjugate Gradient method.
The fourth sub-system is so small we can solve it directly. The first and
second sub-systems are independent, so they can be solved in parallel. Our
first parallel implementation applies a functional parallelism in the following
way.

• The assembly of matrices M , F , E and vectors Ny and Xy is done by
all P processors, where each of them reads one locally stored data file
with n/P observations. After the assembly, the local matrices and vec-
tors are collected and summed on the host processor P0 (with a simple



4 Implementation and Parallelization C394

call to MPI Reduce). Two messages are communicated, one containing
M (5m floating point values), the other one containing F , E, Ny and
Xy (with 4m + 12 floating point values).

• The matrices A, B1 and B2 are assembled on processors P0 and P1.

• The iterative solving with the Uzawa’s algorithm is only started on
P0 and P1. After the initialization, processor P0 solves the first sub-
system in (2). Simultaneously, processor P1 starts solving the second
sub-system in (2) and sends the resulting vector u2 to processor P0,
which then can solve the remaining sub-systems. The solution cost of
the small fourth sub-system is negligible. After the convergence check,
processor P0 sends the vector w to P1 which then starts the next solving
of the second sub-system.

Applying Amdahl’s law, the solver part of the algorithm can achieve at
most a speedup of about 1.333 if the communication of vectors is neglected
and all four large sub-systems need the same time to be solved. So the
total time for this parallel version of the tpsfem algorithm on P processors
becomes:

Ttotal =
n

P
∆Tassembly +

3

4
Tsolve(m)

This shows that the algorithm scales linearly with n. For the assembly step,
using twice as many processors allows us to process data sets with twice as
many observations in the same time.



5 Tests Results from Parallel Implementation C395

5 Tests Results from Parallel Implementation

The tpsfem algorithm has already been applied to fit surfaces to large data
sets from insurance, flow field, digital elevation and magnetic field areas. In
this section, we demonstrate the efficiency of the parallel implementation of
the tpsfem algorithm by using two large digital elevation data sets. The
algorithm can equally be applicable as a nonparametric regression technique
used in data mining.

Elevation data is an important data component required to transform
a Geographical Information System (gis) from a 2-dimensional map stor-
age system into a 3-dimensional information system [10]. Hence, an efficient
surface fitting algorithm such as tpsfem is an important tool for gis ap-
plications. The involvement of end-users in this area is usually interactive.
Therefore, they can benefit significantly from a fast surface fitting algorithm.

Two digital elevation data sets are obtained by digitizing the map of
the Murrumbidgee region in Australia. They have n = 547453 and n =
1887250 observation points, respectively. The test platform are 10 Sun Sparc-
5 workstations connected by a 10 Mbit/s twisted pair Ethernet. All timings
presented here are average of ten test runs on an otherwise idle platform.

The first table shows timings in milliseconds for the assembly stage of the
first data set. We did the test runs for three different matrix dimensions.
One can clearly see how the computation part is independent of the matrix
dimension, but the communication costs increase dramatically with increased



5 Tests Results from Parallel Implementation C396

Table 1:
m Serial Assembly Parallel Assembly on 10 Processors

Computation Communication Total
2,601 87,159 8,781 1,258 10,039
10,201 86,809 8,770 5,162 13,932
63,001 87,250 8,935 29,827 38,762

Table 2:
Number of Parallel Assembly
Processors Computation Communication Total

3 97,231 1,123 98,354
7 41,653 1,524 43,177
10 28,187 1,800 30,987

matrix dimensions.

In the second table we present timings for the second data set with
m = 2, 601. The serial assembly and solution steps took 285, 780ms and
40, 893ms, respectively. The parallel solution step with two processors is
32, 384ms.

Finally, in the third table we introduce timings for the second data set
with m = 10, 201. The serial assembly and solution steps took 284, 939ms
and 624, 287ms, respectively. The parallel solution step with two processors
is 548, 180ms.



6 Conclusions C397

Table 3:
Number of Parallel Assembly
Processors Computation Communication Total

3 98,143 1,762 99,905
7 41,856 4,382 46,238
10 29,374 5,769 35,143

6 Conclusions

In this work we presented a first parallel version of the tpsfem algorithm,
which can handle very large data sets to fit smooth surfaces. There are two
main parts of the algorithm that consume most processing time: Assembly
of the matrices in (1) and solving the system (2). For very large data sets an
almost ideal speedup can be achieved in the assembly step. Unfortunately,
the functional parallelism in the solver part of this implementation is not
scalable, in contrast to the assembly part. Our future research therefore will
concentrate on how to achieve scalability by using distributed algorithms to
solve the linear systems. In order to solve the system (1) we are developing
a generalized cross validation technique.

Acknowledgments: This research was supported by the Advanced Com-
putational Systems CRC. Peter Christen’s stay in Australia has been made
possible by grants from the Swiss National Science Foundation (SNF) and



References C398

the Novartis Stiftung, vormals Ciba-Geigy Jubiläums-Stiftung.

References

[1] Data Mining: An Introduction, Data Distilleries. Report DD19961,
http://www.ddi.nl, 1996. C387

[2] P. Christen, I. Altas, M. Hegland, S. Roberts, K. Burrage and R. Sidje.
A Parallel Finite Element Surface Fitting Algorithm for Data Mining.
Submitted to Parco99, Delft, Holland. C390

[3] A. A. Freitas and S. H. Lavington. Mining Very Large Databases with
Parallel Processing. Kluwer Academic Publishers, 1998. C387

[4] T. J. Hastie and R. J. Tibshirani. Generalized Additive Models.
Monographs, Chapman and Hall, 1990. C388

[5] M. Hegland, S. Roberts and I. Altas. Finite element thin plate splines
for data mining applications. In M. Daehlen, T. Lyche and
L. L. Schumaker, editors, Mathematical Methods for Curves and
Surfaces II, pages 245–253. Vanderbilt University Press, 1998.
(ftp://farrer.riv.csu.edu.au:/pub/irfan/hegra97a.ps.gz)
C390, C392

http://www.ddi.nl
ftp://farrer.riv.csu.edu.au:/pub/irfan/hegra97a.ps.gz


References C399

[6] M. Hegland, S. Roberts and I. Altas. Finite Element Thin Plate
Splines for Surface Fitting. In B. J. Noye, M. D. Teubner and
A. W. Gill, editors, Computational Techniques and Applications:
CTAC97, pages 289–296. World Scientific, Singapore, 1997.
(ftp://farrer.riv.csu.edu.au:/pub/irfan/hegra97b.ps.gz)
C390, C390, C392, C392

[7] M. Fortin and R. Glowinski. Augmented Lagrangian Methods:
Applications to the Numerical Solution of Boundary-Value Problems.
North-Holland, 1983. C391

[8] H. C. Elman and H. G. Golub. Inexact and Preconditioned Uzawa
Algorithms for Saddle Point Problems. SIAM J. Numer. Anal.,
31:1645–1661, 1994. C391

[9] W. Gropp, E. Lusk and A. Skjellum. Using MPI – Portable Parallel
Programming with the Message-Passing Interface. The MIT Press,
Cambridge, Massachusetts, 1994. C392

[10] L. Lang. GIS Goes 3D. Computer Graphics World, 38–46, March,
1989. C395

ftp://farrer.riv.csu.edu.au:/pub/irfan/hegra97b.ps.gz

	Introduction
	Surface Fitting Algorithm
	Solution of Linear Systems
	Implementation and Parallelization
	Tests Results from Parallel Implementation
	Conclusions
	References

