
ANZIAM J. 42 (E) ppC400–C414, 2000 C400

A parallel iterative linear system solver with
dynamic load balancing

Peter Christen∗

(Received 7 August 2000)

Abstract

This paper describes the design and implementation of a parallel
iterative linear system solver for distributed memory multicomputers
and workstation clusters. It is capable of applying heterogeneous data
distribution and dynamic load balancing within an iterative solver rou-
tine at matrix level. Matrices as well as vectors are distributed hetero-
geneously according to the available performances of the processors,

∗Computer Science Laboratory, RSISE, Australian National University, Canberra
ACT 0200, Australia. mailto:pchristen@csl.anu.edu.au

0See http://anziamj.austms.org.au/V42/CTAC99/Chr2 for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:pchristen@csl.anu.edu.au
http://anziamj.austms.org.au/V42/CTAC99/Chr2

Contents C401

and redistributions are carried out at run time if the load of the pro-
cessors changes. We present the concepts behind the chosen matrix
data structures and load measurements, and discuss our dynamic load
balancing algorithm. The results show the suitability of our approach.

Contents

1 Introduction and Related Work C402

2 Concept and Design C404
2.1 Data Distribution and Matrix Data Structures C405
2.2 Load Measurement . C407
2.3 Dynamic Load Balancing C409

3 Implementation and Results C411

4 Conclusions C413

References C413

1 Introduction and Related Work C402

1 Introduction and Related Work

Solving large and sparse linear systems is the core of many applications in sci-
entific computing and engineering. On parallel machines, iterative solvers are
specially attractive. Only a small number of computational kernels—which
can be parallelized efficiently—are needed. The matrix remains unchanged
(no fill-in is produced), so data structures and algorithms are much simpler
than they are for direct parallel sparse linear system solvers.

Several packages for solving sparse linear systems by iterative methods on
distributed memory multicomputers are available today (e.g. Aztec, PETSc
or P-Sparslib). These packages are primarily designed to run efficiently on
homogeneous and static platforms with a regular network topology. They
all provide—more or less—the same functionality, namely routines to create
and preprocess distributed matrices and vectors, various iterative methods
and several preconditioners. Heterogeneous data distribution and dynamic
load balancing (dlb) are not addressed by these packages, which makes them
fairly unattractive for heterogeneous or dynamically changing platforms.

Modern distributed memory multicomputers—e.g. the ibm sp-2—often
allow several users to run their programs simultaneously. Serial as well as
parallel programs in interactive or batch mode can be started, using only one
processor, a subset or all available processors. The load on each processor
may thus change during the run time of a program as other programs may
run on the same processor. For many parallel programs, the most loaded

1 Introduction and Related Work C403

processor becomes a bottleneck if no load balancing is applied at run time.

An attractive alternative to expensive parallel machines are workstation
cluster (wsc) [1]. They provide computational performances comparable to
dedicated parallel machines, but have some special properties. They may be
heterogeneous (different machines) and usually many (background) processes
are running on a processor. The underlying lan is often a shared commu-
nication channel with an irregular topology and slower than the high-speed
networks of dedicated parallel machines. Additionally, many users share a
cluster and workstations may fail or even be shut down.

What is needed for wsc as well as for modern distributed memory mul-
ticomputers are parallel programs that can distribute their data heteroge-
neously at starting time according to the currently available performances
of the processors, and which can apply a dynamic adjustment of the data
distribution according to the changing load at run time.

dlb for parallel programs is a current field of research. Several projects
(e.g. Hector or mpvm) aim at providing transparent dlb for message passing
programs within the message passing environment by migrating tasks of the
parallel program from overloaded to underloaded processors. Other systems
involve the application programmer, i.e. some calls to load balancing func-
tions have to be inserted into a parallel program. Object oriented approaches
try to hide the load balancing mechanism within their distributed objects.

The aim behind our work is to provide a parallel iterative linear system
solver with dlb. We developed a library of routines which can adapt the

2 Concept and Design C404

data distribution (matrix and vectors) dynamically according to the changing
loads of the processors.

2 Concept and Design

In our parallel iterative solver [2] work is proportional to the locally stored
data (matrix rows and vector elements). This data is distributed proportional
to the computational performances of the used processors. If processors are
loaded unequally, the most loaded processor becomes a bottleneck of the
parallel program. Removing data from an overloaded processor and redis-
tributing it to other processors will balance the load and thus eliminate the
bottleneck.

Redistributing data always introduces an overhead, as additional work
has to be done and some nodes get more data and thus more work to do.
It is therefore better to tolerate a certain amount of load imbalance than
redistribute data too often. A threshold value has to be chosen, and redis-
tribution is only applied if the load imbalance is above this threshold. A
second parameter that affects the overhead and thus the efficiency of dlb

in our approach is the interval—i.e. the number of iterations—between two
possible redistribution steps. This two parameters (called dlb threshold and
dlb iteration) have to be set by the user. Choosing optimal values for both
parameters will result in a minimal run time, but finding such values is dif-
ficult, as they depend upon hardware characteristics, the problem size and

2 Concept and Design C405

structure as well as the load situation (how imbalanced the system is and
how fast the load of an individual node changes).

The main ideas behind our algorithm for dlb within an iterative solver
are (1) to design data structures for matrices and vectors that allow a redis-
tribution of matrix rows and vector elements from one processor to another,
(2) to measure the current load on all processors in every iteration and (3)
to carry out the redistribution (as transparently as possible) if needed. We
describe these three points in more detail in the following sections.

2.1 Data Distribution and Matrix Data Structures

Distributed data in our parallel solver consists of the coefficient matrix and
vectors. Before data is distributed, the floating-point performance of each
processor is measured with a micro-benchmark. Data is then distributed
according to these performances. The more powerful a processor at this
moment is (i.e. the faster it is with floating-point computations), the more
matrix rows it gets. If more processors are available than are needed, the
most powerful ones are chosen.

Matrices are distributed block row-wise, so each processor gets a contigu-
ous set of matrix rows. Our dynamic sparse matrix data structure consists
of an array of length N on each processor (with N the matrix dimension),
which contains pointers to the stored rows, as well as the number of non-zero
elements (nze) in the rows. Each sparse row consists of two arrays, one

2 Concept and Design C406

Static (Compressed Sparse Row) Dynamic

Processor 0

elems

columns

row_ptr
3 5 9 11

Processor 1

elems

columns

row_ptr
75 9

Processor 2

elems

columns

row_ptr
4 6 10

Processor 0

3
2
4
2
4
3
2
4
2
4

Processor 1

4
2
4
2
3
4
2
4
2
3

Processor 2

4
2
4
2
3
4
2
4
2
3

Figure 1: Sparse Matrix Data Structures

with the integer column indices and the other with the corresponding nze

stored as floating-point values. To compare the overhead of our dynamic
data structure, we additionally provided our solver with the commonly used
Compressed Sparse Row (csr) data structure (which does not allow a data
redistribution). An example of both data structures with a matrix of dimen-
sion 10 and 30 nze can be seen in Figure 1.

With our distributed dynamic data structure it is possible to allocate
and deallocate rows at run time and perform dlb by moving rows from one
processor to another. Because a processor can only store a contiguous block of
rows, redistribution can only be done by moving rows between neighbouring
processors. The advantage of this method is that when a matrix-vector
multiplication (mvm) is performed, each processor computes a contiguous
part of the result vector, and no permutations of the matrix and vectors
have to be managed. But there is the drawback that rows can not directly
be moved from the most overloaded to the most underloaded processor.

2 Concept and Design C407

2.2 Load Measurement

The aim of dlb is to achieve a minimal run time of a parallel program by
equally distributing the work onto the processors at any time. The load of a
processor is characterized as a measurement of the utilization of its various
resources. There are several ways to measure the load of a Unix workstation.
First, read the load by a system call. In Unix, however, one needs to have
root privileges to access system (kernel) variables, so this method can not be
applied by a normal user program. Secondly, use pipes and Unix commands
like w or iostat to get the load. Unfortunately, this takes several hundred
milliseconds. The third approach—the one we have chosen in our approach—
is to measure the processing speed of the parallel application program itself
on all processors. This method is almost system independent and only a
small overhead is introduced.

In our parallel solver, we measure the run time (wall clock time) of the
local computations (i.e. mvm, dot products and vector additions) within each
iteration to get the current load. dlb then tries to balance the local compu-
tation times on all processors. If matrix rows are removed from a processor,
its computation time is shortened and the load is reduced. Once the load
is measured, it has to be broadcasted to all processors. Fortunately, this
communication can be combined with the communication of the distributed
dot products, so only a small overhead is introduced.

2 Concept and Design C408

Increment dlb counter
IF (dlb counter < dlb iteration) THEN RETURN
dlb counter = 0
Compute current system imbalance sys imbalance
IF (sys imbalance < dlb threshold) THEN RETURN
Compute new row distribution based on current loads
Find upper and lower neighbour processors Pupper and Plower

Compute number of upper and lower exchange rows rupper and rlower

Redistribute matrix rows

Redistribute vectors according to new matrix row distribution
Updatedata structures
RETURN

Figure 2: Outline of the Dynamic Load Balancing Algorithm

2 Concept and Design C409

2.3 Dynamic Load Balancing

The general outline of our dlb algorithm can be seen in Figure 2. It works
as follows. First the internal dlb counter is increased. dlb is only performed
if the value of this counter is equal to dlb iteration (a parameter set by the
user). Next, the system imbalance is computed using the current loads. If it
is less than a chosen threshold, no redistribution is needed and the algorithm
is left. It follows the computation of the new optimal matrix row distribution
depending on the current loads. Each processor determines its neighbours
and computes the number of matrix rows rupper and rlower it has to send to or
receive from them. Matrix rows are exchanged next. As this communication
can become quite time consuming, we have developed several methods to
reduce this overhead (see below). The matrix row redistribution is done in
three steps. First, new rows are allocated on a destination processor. Sec-
ondly, the rows are communicated as needed; and finally, unused rows are
deallocated on the source processors. Several sparse matrix rows are com-
municated in one message to reduce startup times. After redistributing a
matrix, vectors are redistributed as needed according to the new matrix dis-
tribution. Finally, all data structures are updated. The whole redistribution
is completely transparent to the calling solver routine, i.e. before and after
the dlb algorithm all data structures are consistent with the current data
distribution.

When dlb within our parallel iterative solver is performed by moving ma-
trix rows and vector elements from one processor to another, the amount of

2 Concept and Design C410

DLB

stored only rowsstored and used rows

Processor 0 Processor 1 Processor 2 Processor 0 Processor 1 Processor 2

Figure 3: dlb with Overlapping Matrix Regions

data to be communicated—i.e. matrix rows and vector elements—can become
quite large. Because communication is usually much slower than computa-
tion, the dlb communication introduces a large overhead.

We have developed several methods to reduce the overhead of the dlb

communication. The first one tries to overlap communication with compu-
tation (e.g. a mvm). The second method allows only the most overloaded
processor to send rows to its neighbours. Another idea is to store matrix rows
on several nodes redundantly and create overlapping regions (see Figure 3).
In this method, no rows are moved physically between processors, so the only
communication that takes place is the redistribution of vectors.

3 Implementation and Results C411

3 Implementation and Results

We have implemented our dlb algorithm in our solver paiss [2] (Parallel
Adaptive Iterative Linear System Solver). This is a library of routines pro-
grammed in spmd programming style in ansi c which uses mpi [4] for com-
munication. Currently the Conjugate Gradient (cg) method with polynomial
and diagonal preconditioning is implemented. The prototype runs on Sun
workstations, a Swiss SCS Gigabooster [5] and on an IBM SP-2.

Table 1 presents results achieved on a wsc with 6 SUN Sparc-5 machines
connected by a 10 MBit/s switched Ethernet. A linear system with the ma-
trix bcsstk17 (dimension 10974, 428650 nze) from the Harwell-Boeing [3] col-
lection has been solved. The dlb parameters have been set to dlb iteration =
50 and dlb threshold = 40%. The second workstations has been loaded arti-
ficially with another process performing floating-point computations. With
a small number of processors, our dlb algorithm can achieve good improve-
ments. More timing results on several platforms can be found in [2].

Figure 4 shows a detailed view of a single test run with the matrix bc-
sstk16 (dimension 4884, 209378 nze) on three processors of a Swiss SCS
Gigabooster [5]. As the second workstation gets loaded after 130 iterations, a
redistribution step has been triggered in iteration 200. The dlb algorithm is
called and matrix rows are removed from processor 1, so the computational
times get balanced afterwards.

3 Implementation and Results C412

Table 1: cg Run Time for bcsstk17 (Milliseconds per Iteration)
Processors 1 2 3 4 5 6

All Processors idle 178 105 85 72 71 75
One Processor busy, no dlb 342 231 163 112 97 84

Non-Overlap dlb – 162 102 83 81 78
Overlap dlb – 142 103 85 77 84
One-Sender dlb – 141 100 84 95 85
Matrix-Overlap dlb – 140 96 84 79 83

Number of iterations

M
at

rix
 r

ow
 d

is
tr

ib
ut

io
n 4000

3000

2000

1000

5000

0

40
0

37
0

34
0

28
0

25
0

22
0

19
0

13
0

10
07040 31

0
16

010

Processor 1

Processor 0

Processor 2

Number of iterations

C
om

pu
ta

tio
n

tim
e

pe
r

ite
ra

tio
n

[m
s] 120

100

80

60

40

40
0

37
0

34
0

28
0

25
0

22
0

19
0

13
0

10
07040 31

0
16

010

Processor 2

Processor 1

Processor 0

Figure 4: Computational Times and Matrix Redistribution for bcsstk16

4 Conclusions C413

4 Conclusions

We presented a parallel iterative linear system solver which is capable of
applying dynamic load balancing at matrix level by redistributing rows and
corresponding vector elements as needed by a changing load situation to get a
balanced load. Although the overhead introduced is large, our approach can
achieve improvements in the solver run time. A careful implementation—
overlapping communication with computation or introducing overlapping
regions—and choosing suitable values for the load balancing threshold and in-
terval are required to achieve run time improvements. It is harder to achieve
good improvements if the platform is very dynamic, because a new data
distribution can already be outdated after a small number of iterations.

Acknowledgment: The author’s stay in Australia has been made possi-
ble by grants from the Swiss National Science Foundation (SNF) and the
Novartis Stiftung, vormals Ciba-Geigy Jubiläums-Stiftung.

References

[1] T. E. Anderson, D. E. Culler and D. A. Patterson. A case for NOW
(Networks of Workstations). IEEE Micro, 1:54–64, 1995. C403

References C414

[2] P. Christen. A Parallel Iterative Linear System Solver with Dynamic
Load Balancing. Ph.D. thesis, University of Basel, 1999. C404, C411,
C411

[3] I. S. Duff, R. G. Grimes, and J. G. Lewis. User’s Guide for the
Harwell-Boeing sparse matrix test problems collection. Technical
Report RAL-92-086, Computing and Information Systems Department,
Rutherford Appleton Laboratory, Didcot, UK, 1992. C411

[4] Ohio Supercomputing Center, The Ohio State University. MPI Primer/
Developing With LAM. Ohio State University, 1995. C411

[5] B. Tiemann, H. Vonder Mühll, I. Hasler, E. Hiltebrand, A. Gunzinger
and G. Tröster. Architecture and implementation of a single-board
Desktop Supercomputer. In B. Hertzberger and G. Serazzi, editors,
Lecture Notes in Computer Science No. 919: HPCN Europe 1995,
Proceedings, Milan, Italy, 1995. Springer. C411, C411

	Introduction and Related Work
	Concept and Design
	Data Distribution and Matrix Data Structures
	Load Measurement
	Dynamic Load Balancing

	Implementation and Results
	Conclusions
	References

