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Identification and classification of interesting
variable stars in the MACHO database
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Abstract

The MACHO database is an astronomical database of the inten-
sities of about 20 million stars, recorded approximately every night
for several years. About one percent of these stars are classified as
“variable stars”. These variable stars are generally roughly periodic
and can have periods ranging from less than one day to hundreds or
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thousands of days. We investigate the application of computationally
simple features in order to classify these stars. We present a methodol-
ogy for extracting potentially interesting stars based on their location
in feature-space, and methods for using human interaction to group
these interesting stars.
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1 Introduction

The MACHO database [1, 3] is an astronomical database consisting of the
intensities of about 20 million stars recorded approximately every night for
several years. The main aim of the collection is to search for very rare events
called microlensing when a massive compact object passes in between the
observer and a star and amplifies the observed signal. The unusually long
records of many stars mean it is also useful for observing the behaviour of
variable stars.

About one percent of stars are classified as “variable”. These variable
stars are generally periodic and can have periods ranging from less than one
day to hundreds or thousands of days.

The data for each star consists of a matrix of the following values: time,
red band spectral intensity, red error, blue band spectral intensity and blue
error. It is worth noting that the time of observation is not regular, and
occasionally either red or blue observations are not recorded.

In summary, the dataset consists of a large number of irregularly sam-
pled time series with two weighted observations (intensities and errors) and
missing values.

The large number of stars and irregular sampling present a problem. The
size of the dataset motivates us to simplify the problem by working with
features which describe each star’s behaviour and reduce the dimensional-
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ity considerably. Unfortunately, the irregular sampling means that standard
methods for Fourier transforms and wavelets cannot be used. We cannot
simply interpolate the data on a uniform grid since many stars vary near
or less than the Nyquist frequency, which information is lost when interpo-
lating. Scargle [7, 8] has done a lot of work in extending Fourier analysis
to the unevenly sampled time domain but the computations are not simple.
Reimann’s thesis [5] discusses finding the periods of variable stars using a
non-linear method, but this is extremely computationally difficult.

There has been a lot of work on variable stars in the MACHO database
in astronomy, notably [1, 9]. In the data mining area, Ng, Huang and
Hegland [4] attempt to cluster and classify variable stars from the MACHO
database using interpolated Fourier techniques with mixed success.

The dataset investigated in this paper is a subset of the MACHO dataset,
referred to as the Wood dataset [9] which contains 792 stars that are consid-
ered likely to be long-period variable stars.

The red observations of four typical stars in the Wood dataset are shown
in Figure 1. The blue observations are similar and are not shown. The errors
are shown as error-bars, and some indication is given in each plot of the
values of particular features (see §2), notably average, amplitude and time-
scale. Note the variation in behaviour between stars, and the large gaps
where no data was recorded.
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F1GURE 1: The red observations of four typical stars in the Wood dataset.
The stars are labelled 77.7306.213, 77.7424.46, 77.7666.748 and 77.8153.64
respectively.
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2 Features

In order to compare stars, we need to reduce the amount of information
from the thousands of data points per star to a short vector of features.
These features should be time-invariant (since phase is unimportant in this
problem), computationally simple to calculate (O(N) to ensure scalability)
and preferably interpretable. The last allows experts to make judgements
based on their knowledge of the physics of the problem, without having to
learn new paradigms, and also allows non-experts to gain some grasp on the
situation.

2.1 Notation

Due to the additional complication of missing values, it is simpler to con-
sider the data for each star to be two time series of intensities and errors:
{R(tF),i=1,2,...,Ng} and {B(t?),i =1,2,..., Ng}. R and B are vectors
(red and blue) containing intensities (R; and By) and errors (Rg and Bg). A
generic time series of the same form will be referred to as X. The time series
X7 is assumed to be the sum of a deterministic signal and random errors:

The error estimate Xz is assumed to have a similar scale to e.
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There are cases where we wish to compare the two time series R and B.
In these cases we will use a combined time series C', which contains those
observations where both red and blue intensities were recorded. When it is
clear that we are comparing the combined time series C', R and B will refer
to the red and blue time series subsets from C'.

2.2 Initial features

The average value of a time series is

mx = < 3 X4t 2)

Alternatively, one could use weighted average based on the error estimates
but in practice the two were found to be very similar, and only the average
mx is used in this paper.

The amplitude of a time series is

The correlation of a combined time series is

1 Ne

> (Ry(t;) — mg)(Bi(t;) — mp). (4)

po = (NC — 1)SRSB i—1
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dz(t)
Tdt

Assume we have a derivative of the time series X'(= ), then an esti-

mate of the time scale of the intensity variation is

X
Tx =2 : (5)
X7
where the norm || X || is defined as
tNX
L&t - mx)? dt
X1 = = — : (6)
tny — 11

We can also estimate the “spread” of the time scale in the signal as

X (1
Aty =27 / J - : (7)
[1X]] [1X]]
Both 7y and A7y require derivatives to be calculated. This is accomplished

using a numerical difference method described in [2], with the integral cal-
culated using the trapezoidal method.

2.3 Transformations

After calculating the above features some transformations were applied to
produce the following features. The rationale behind this was to produce
less correlated features that were still meaningful.
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Colour A standard astronomical conversion, calculated as the difference
between the red and blue averages:

colgg = mpr — mp; (8)

Log relative amplitude

Relative delta time scale

rdtsy = : (10)

3 Boxing: an Iterative Clustering and Clas-
sification Algorithm

While the above features were reasonable at grouping similar stars together,
they were not totally successful at separating quite different sorts of stars.

The intuitive idea behind the boxing algorithm is to repeatedly choose
“Interesting” examples (patterns) from the dataset and classify them accord-
ing to previously selected examples. Clearly, there are three difficulties here:
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the ability to choose interesting examples, the classification, and deciding
whether the interesting example is deserving of a new class.

Given a set of unboxed patterns P, a set of boxed patterns B (set of pairs
(p, 1), where p is a pattern and [ is a label), a method of choosing a pattern
from the unboxed pattern set p < select(P) and a method of comparing a
pattern with the boxed patterns [ «— compare(p, B), the boxing method is a
repeated application of Algorithm 1:

Algorithm 1 (P, B) « box(P, B, select, compare) =

1. p < select(P),

2. | — compare(p, B),
3. B—BU{(p,)},
4. P—P\A{p}.

The selection algorithm select picks a pattern from the unboxed pattern
set. Assuming the pattern set contains different classes of patterns, and the
comparison algorithm is reasonable at comparing these classes, a good selec-
tion algorithm would choose patterns which are “typical” of those different
classes (e.g., near the mean, in a k-means sense).

The comparison algorithm compare is used to compare a particular pat-
tern with the already boxed patterns. The result is a label identifying with
which class that particular pattern belongs. The comparison algorithm can
be thought of as a front-end to a similarity measure, which compares two
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patterns. The comparison algorithm then chooses the class that contains
the most patterns which are most similar. If none of the previously boxed
patterns are similar enough to the test pattern, then the pattern is put in a
new class.

The comparison algorithm (or similarity measure) must clearly have some
“expert” knowledge about the dataset before being able to make good judge-
ments regarding the similarity of two patterns. Automating this is a difficult
task. One possible method is to initiate the process using an expert hu-
man until the classified base is large enough, such that standard automated
methods can be used. The standard automated methods could then use a
larger set of explicit information (such as Fourier series or wavelet coefficient
features) than the human.

4 Applying Boxing to the Wood Dataset

In applying the above described boxing algorithm to the Wood dataset, we
used two selection algorithms: one based on a star’s location in feature-space,
and one random. In both cases, the comparison was done by a non-expert
human who had extensively investigated the dataset.

We reasoned that stars located near the extreme values of feature-space
(what we called “extreme cases”) would be more interesting, and may exhibit
more extreme behaviour [6]. They would hence be better examples of their
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respective classes, particularly where there is a smooth variation between two
classes (as seems to be the case in the Wood dataset).

Astrophysicists believe that stars change in behaviour over their lifetime,
and many of these features reflect this variation. Hence a particular class
of star may have a large amplitude (say), and this amplitude may change
through its lifetime. It is important to be able to distinguish between these
sub-classes (i.e., differentiate young and old stars).

The extreme-case selection in this example was manual, based on each
star’s locations in various two-dimensional plots of particular features, no-
tably red log relative amplitude, red time-scale, and red relative delta time-
scale. In earlier investigations, these features seemed to separate the stars
best.

During the extreme-case selection and boxing process 59 stars were ex-
tracted and classified, producing a total of 10 boxes (or classes). Some ex-
amples of these stars are shown in Figure 2. Box number 9 is especially
interesting, since it corresponds to a new class of variable star previously
discovered from the same dataset by astronomer Peter Wood [9].

As a justification of the extreme-case selection process, see Figure 3 which
shows that although these features are not perfect in extracting clusters, they
are good at grouping similar sorts of stars.

During the random selection and boxing process 30 stars were extracted
and classified, producing a total of 9 boxes. Some of the cleanest examples
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FIGURE 2: Six stars belonging to three boxes, where selection was by extreme

cases.
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F1GURE 3: Two depictions of the extreme-case boxing process with respect to
two particular features: red frequency (inverse of time-scale) and red log rel-
ative amplitude. Each point in the left plot is a star in the Wood dataset; the
+’s are those that were selected for boxing using the extreme-case method.
The right plot shows just those stars that were boxed identified by their label.
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of these stars are shown in Figure 4. During the process, it was noted that it
became increasingly difficult to make a decision regarding which class the ex-
ample pattern belonged to since there were usually two potential matches in
different classes. It was presumably easier to decide when using the extreme-
case selection because it chose stars which were more extreme in behaviour.

5 Conclusion

The computationally simple and interpretable features provide a good step-
ping stone to classifying the variable stars. In addition, the boxing process
was successful in identifying several groups of interesting stars.

The methods used by the astronomers are similar to the boxing, but the
former has less intelligence in the selection process and more expert knowl-
edge with regard to the physical behaviour of stars whereas our method
makes the work faster since it targets interesting candidates. Astronomers
using this process may find it beneficial in locating interesting stars, partic-
ularly since their expert knowledge will assist in classification.

There are many directions that can be investigated in the future.

With respect to the selection process, fully automating extreme-case se-
lection would aid the boxing process. It would be interesting to try this
selection process on other time-series data.
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FIGURE 4: Six stars belonging to three boxes, where selection was random.
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With respect to the comparison process, the use of “shape” features could
be used to precisely describe the particular behaviour of the classes of variable
stars. As an aid to automating comparison one could use an expert human
as bootstrap mechanism to obtain an initial training set which a standard
supervised learning tool could use.
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