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The linear sampling method for
three-dimensional inverse scattering problems
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Abstract

The inverse scattering problem under consideration is to determine
the shape of an obstacle in R3 from a knowledge of the time harmonic
incident acoustic wave and the far field pattern of the scattered wave
with frequency in the resonance region. A method for solving this
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nonlinear and improperly posed problem is presented which is based
on solving a linear integral equation of the first kind and avoids the
use of nonlinear optimization methods. Numerical examples are given
showing the practicality of this new approach.
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1 Introduction

Inverse scattering theory is concerned with determining the shape of a scat-
tering obstacle from a knowledge of the scattered acoustic or electromagnetic
wave corresponding to a given incident field. Although of considerable im-
portance in various areas of science and technology, the mathematical and
numerical analysis of such problems is of relatively recent origin. There have
been a number of successful reconstruction algorithms proposed for the three
dimensional time harmonic inverse scattering problem for both acoustic and
electromagnetic waves, all of which are based on some type of nonlinear opti-
mization scheme [4, 1, 9, 12, 13, 15]. Such schemes are particularly attractive
since they are able to treat the nonlinear and improperly posed nature of the
inverse scattering problem in a simple and straightforward manner [3, 14].

Unfortunately, nonlinear optimization methods are often unsatisfactory
in practical shape reconstruction problems. This is due to the fact that in
order to implement such methods it is necessary to know the number of
components of the scatterer as well as a rough idea of the geometry of each
component in order to choose an appropriate parameterization of the surface.
In addition, it is also necessary to know the boundary condition satisfied by
the field on the surface of the scatterer. The fact that in many cases of prac-
tical importance some or all of the above a priori information is not available
has motivated the development in recent years of methods of inversion that
are not based on nonlinear optimization methods [2, 5, 16, 17, 18]. An
attractive feature of these new methods is that they require no a priori infor-



2 Inverse Obstacle Scattering Problems C437

mation at all about the connectivity or geometry of the scattering obstacle.
In addition, the method originally proposed by Colton and Kirsch [2] and im-
proved by Colton, Piana and Potthast in [5] also requires no knowledge of the
boundary conditions satisfied by the field on the boundary of the scatterer
(see also [16]). A numerical implementation of the linear sampling method
for three dimensional problems was presented by Colton, Giebermann and
Monk [7]. The purpose of this paper is to report on further numerical im-
provements of the linear sampling method as well as their application to
inverse scattering problems involving penetrable, inhomogeneous, isotropic
media.

The plan of our paper is as follows. In the next section we will describe
the inverse scattering problem to be studied. Then we present the linear
sampling method for solving this problem. We will then discuss the numerical
implementation of this method and finally we will present some numerical
results obtained by the linear sampling method.

2 Inverse Obstacle Scattering Problems

The aim of this section is to provide some basic facts about the mathematical
theory of wave scattering in homogeneous and inhomogeneous media (see [3]).
We start with the homogeneous case: Let Ω ⊂ R3 be the open complement
of an unbounded smooth domain and let Γ = ∂Ω be the boundary of Ω.
Since we will only consider time-harmonic waves, we can identify an acoustic
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wave with a complex valued function that does only depend on space and
not on time. The most important physical parameter for this model is the
wavenumber k, defined as k = 2π/λ, where λ denotes the wavelength.

If we denote an incoming wave by ui, the scattered wave by us and the
total wave by u = ui + us, then the scattering process leads to an exterior
boundary value problem for the Helmholtz equation:

∆u + k2u = 0 in R3 \ Ω (1)

where the boundary values on Γ depend on the physical properties of the
scatterer Ω, i.e., ui + us = 0 on Γ for “sound soft” and ∂

∂ν
(ui + us) = 0 on Γ

for “sound hard” scatterer. Furthermore, the scattered wave us has to satisfy
the Sommerfeld radiation condition

r

(
∂

∂r
− ik

)
us → 0 for r = |||x||| → ∞. (2)

The radiation condition (2) yields the asymptotic

us(x) =
eik|||x|||

|||x|||
{

u∞(x̂) + O(
1

|||x|||2 )

}
for |||x||| → ∞ (3)

where u∞ is the “farfield pattern” defined on the unit sphere S2 =
{
x ∈

R3 : |||x||| = 1
}
. Figure 1 illustrates the decomposition of an acoustic field in

an incoming and a scattered field. Here, the incoming wave is a plane wave
travelling in the positive x-direction. We now come to the inhomogeneous
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scattering of a plane wave on a sound soft obstacle

Re(ui) Re(us) Re(ui + us)
scattering of a plane wave on a sound hard obstacle

Re(ui) Re(us) Re(ui + us)

Figure 1: Here we show the decomposition of the acoustic field in an in-
coming and a scattered field
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case, where we assume that we have a medium with a constant density in
R3 \ Ω̄ and thus a constant wavenumber k. Inside the obstacle Ω the density
and hence the wavenumber may vary. The mathematical formulation of the
scattering of an incoming wave ui reads as

∆u + k2n(x)u = 0 in R3,
u = ui + us

lim
r→∞

r (∂us/∂r − ikus) = 0
(4)

where n(x) denotes the “refractive index”. Again, the radiation condition
yields the asymptotic (3).

The inverse obstacle scattering problem then reads as follows: given one or

more incident plane waves ui(x; θ̂) := eikx·bθ, travelling in the directions θ̂ ∈ S2

and the associated farfield pattern u∞(x̂; θ̂), x̂ ∈ S2 we want to determine the
shape Ω of the scatterer. Note that due to Rellichs lemma, a radiating
solution of the Helmholtz equation is uniquely determined by its farfield
pattern.

3 The Linear Sampling Method for Solving

Inverse Scattering Problems

In this section we briefly describe the linear sampling method for the solution
of inverse obstacle scattering problems (see also [2, 5, 6, 7]).
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Let F : L2(S2) → L2(S2) denote the farfield operator defined as

(Fg)(x̂) =

∫
S2

u∞(x̂; θ̂)g(θ̂)ds(θ̂). (5)

Note that the farfield pattern u∞(·; ·) serves as the kernel of the integral op-
erator F and that the range of the operator is dense in L2(S2). Furthermore,
let us consider the singular value decomposition of the operator F , i.e., we
have two complete orthonormal bases V = {v1, v2, . . . } and U = {u1, u2, . . . }
of L2(S2) and a non increasing sequence of singular values σ1 ≥ σ2 ≥ . . . ,
such that

Fvj = σjuj, j = 1, 2, . . . (6)

holds. Using the orthonormal bases U and V we can define the finite dimen-
sional spaces Un := span{u1, u2, . . . , un} and Vn := span{v1, v2, . . . , vn} as

well as the L2(S2) orthogonal projections Π
(U)
n and Π

(V )
n on these spaces:

Π(U)
n f =

n∑
j=1

〈f, uj〉uj and Π(V )
n f =

n∑
j=1

〈f, vj〉vj . (7)

Let Ψz denote a point source located at z ∈ R3 and rz its farfield pattern,
i.e.,

Ψz(x) =
eik|||x−z|||

|||x−z|||
and rz(x̂) = e−ikbx·z. (8)
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The idea of the linear sampling method is to look at the equation

Fgn
z = Π(U)

n rz =: rn
z . (9)

The motivation is that for z /∈ Ω the resulting farfield pattern rz is “non
physical” in the sense that we cannot continuate Ψz from the boundary Γ
to a radiating solution of the Helmholtz equation in R3 \ Ω. In contrast,
if z lies inside Ω then we can find such a continuation which is Ψz itself.
Hence, we hope to observe the physical sensibility of the right hand side,
which depends on z, from the norm of the solution. Note that since we
look at finite dimensional projections, the equation (9) is always solvable.
Hence, we use the norm of the solution as an indicator. More precisely, the
method is based upon the following observation: for any two points z ∈ Ω
and z̃ ∈ R3 \ Ω holds

lim
n→∞

‖gn
z ‖

‖gn
ez ‖

= 0. (10)

For n ∈ N we define

Mn := min
z∈R3

‖gn
z ‖L2 (11)

and approximate the scatterer Ω by Ωε
n, 0 < ε < 1, defined as

Ωε
n :=

{
z ∈ R3 :

Mn

‖gn
z ‖L2

≥ ε

}
. (12)

Since the integral equation (9) is ill posed, regularization is necessary. Sev-
eral modifications of the method have been proposed (see [5, 11]). For our
numerical examples, we use the following two variants:
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(I) Tikhonov regularization of (9), i.e.,

(F ∗F + αI)gn
z = F ∗rn

z . (13)

The regularization parameter α is obtained by Morozovs discrepancy
principle [19] where the parameter δ is an estimate for the error in the
data:

‖F ∗Fgn
z − rn

z ‖ = δ‖gn
z ‖. (14)

(II) Modified integral equation [10, 11]

(F ∗F )1/4gn
z = Π(V )

n rz. (15)

4 Numerical Realization

For the numerical realization of the linear sampling method we assume that
an approximate “measured” far field pattern ua

∞ is known for n incident plane

waves with direction vectors θ̂j ∈ S2, j = 1, . . . , n, and measured in the same
directions. Thus we have as data{

ua
∞(θ̂j , θ̂`)

}n

j,`=1

and ua
∞(θ̂j , θ̂`) is approximately equal to u∞(θ̂j , θ̂`) (we shall make this precise

shortly). In our numerical examples we take n ∈ {42, 162} and θ̂j , j =
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Figure 2: Here we show two surface triangulations of the unit sphere S2 on
which measurements are taken (in the far field). They use 80 triangles with
42 nodes respectively 320 triangles with 162 nodes.
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1, . . . , n, are located at the nodes of the surface triangulations of S2 shown
in Figure 2. As the kernel of the farfield operator F is smooth, we can
use a Nyström type method for the numerical approximation of the integral
operator, that is,

(Fg)(θ̂j) ≈ 4π

n

n∑
`=1

ua
∞(θ̂j , θ̂`)g(θ̂`) = Fg (16)

with the matrix

F =
(4π

n
ua
∞(θ̂j , θ̂`)

)n

j,`=1
(17)

and a vector

g =

(
g(θ̂1), g(θ̂2), . . . , g(θ̂n)

)>
. (18)

Furthermore, we approximate the L2(S2) norm for g ∈ L2(S2) by the Euclid-
ian norm of the vector g, i.e., ‖g‖L2(S2) ≈

√
4π/n‖g‖`2 .

The linear sampling method starts by computing the singular value de-
composition of the matrix F

F = UΛV ∗ (19)

where U and V are unitary and Λ is real diagonal with Λ`,` = σ`, 1 ≤ ` ≤ n.
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The solution of (9) is then equivalent to solving

ΛV ∗gz = ρz, (20)

with

ρz = (ρz,1, ρz,2, · · · , ρz,n)
> = U∗rz

and

rz =
(
e−ikz·bθ1, . . . , e−ikz·bθn

)>
.

Then the Tikhonov regularization of (13) leads to solving

min
gz∈ Cn

‖ΛV ∗gz − ρz‖2
`2 + α ‖gz‖2

`2

where α > 0 is the Tikhonov regularization parameter. Defining uz = V ∗gz,
we see that the solution to the problem is

uz,` =
σ`

σ2
` + α

ρz,` , 1 ≤ ` ≤ n , (21)

and hence

‖gz‖`2 = ‖uz‖`2 =

(
n∑

`=1

σ2
`

(α + σ2
` )

2
|ρz,`|2

)1/2

.

The regularization parameter α depends on both z and the error in the data
{ua

∞} [5]. As mentioned previously, we use the Morozov discrepancy principle
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to determine α. Suppose we know an estimate for the error in the far field
operator so that

‖F − F a
h‖ ≤ δ (22)

for some δ > 0 (using the operator norm induced by L2(S2)). Then the
Morozov procedure picks α = α(z) to be the zero of

mz(s) =

n∑
j=1

δ2σ2
j − s2

(s + σ2
j )

2
|ρz,j|2 , s > 0. (23)

For the second variant, (15) yields the linear system

V Λ1/2V ∗gz = rz . (24)

If we define µz = V ∗rz and vz = V ∗gz, the solution of this equation is

vz,` = µz,`σ
−1/2
` , 1 ≤ ` ≤ n (25)

and the norm of the solution becomes

‖gz‖`2 =

(
n∑

`=1

|µz,`|2
σl

)1/2

. (26)

For the shape reconstruction we proceed as follows. For some ε > 0 we
determine the boundary of Ωε

n. Since the evaluation for each point requires
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the solution of a linear system, we use an adaptive strategy to minimize the
costs. We will comment on the choice of the parameter ε soon.

We choose an initial coarse grid such this grid completely contains the
scatterer (see also [2]). In our case this is an 8 × 8 × 8 grid of cubes, but in
general the size of the initial grid needs to be chosen so that it is likely that
one of the initial vertices will be interior to the objects to be detected (some
a priori knowledge of the size of the object to be detected is assumed). We
evaluate ‖gz‖l2 for z at the vertices of all the cubes. Then we set M to be
the minimum of all these values. The cubes are then classified as follows. If
Q is a cube in the mesh then:

• Q is an interior cube if ε‖gz‖l2 < M at all the vertices of Q.

• Q is an exterior cube if ε‖gz‖l2 > M at all the vertices of Q.

• Q is a boundary cube if it is not interior or exterior.

At the next stage of the algorithm, each boundary cube is further subdivided
into 8 (or 2×2×2) sub-cubes, and the sub-cubes are again classified. In our
examples, a third subdivision is also used. Effectively, we have the accuracy
of a uniform 32×32×32 grid but with much less work. A typical refinement
path (for the star) is shown in Figure 3. In the final step of the surface
reconstruction algorithm we proceed as follows: For every boundary cell we
use linear interpolation along the edges to locate points where ε‖gz‖`2 =
M . Then we draw a polyhedral using these points as vertices. This results
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in a more accurate approximation of the boundary than a simple “box”
approximation using boundary cubes. The use of the adaptive threshold
algorithm alleviates the three problems mentioned previously in that the
algorithm efficiently predicts a surface regardless of topology or position.
However the method depends critically on the choice of the cut–off parameter
ε. Numerical experiments reveal that ε needs to be chosen depending on the
method (variant (I) or (II)), wave numbers, and size of the target scatterer.
Thus we propose to “calibrate” each method by choosing ε using a synthetic
experiment with a known scatterer. In our experiments, we use a unit ball as
the calibration scatterer. Using the wave number for the inverse problem, we
can predict the far field pattern for the calibration scatterer, then compute
‖gz‖`2 in the desired region of space for the inverse problem (the ball is useful
since the far field is easy to compute via series). We then choose ε such that
the surface where

ε‖gz‖`2 = min ‖gw‖`2

matches the boundary of the calibration scatterer.

Comparisons of 1/‖gz‖ for the various methods are shown in the first row
of Figure 4. It is clear that ε for the variant (I) must be chosen larger than
ε for the variant (II), and that the choice depends on k. We also see that
for the sound hard case and for large wavenumber k the sampling yields no
sharp jumps near the boundary. To overcome this problem we replace the
right hand side rz with the farfield pattern of higher moments, e.g., with the
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Figure 3: Here we show three steps of the adaptive reconstruction algorithm
applied to star shaped scatterer
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farfield pattern of an acoustic dipole

Ψz(x) = d · ∇eik|||x−z|||

|||x−z|||
, d ∈ S2

which gives the farfield pattern

rz(x̂) = ikx̂ · de−ikz·bx.

The second row in Figure 4 shows the result for this modified right hand
side.

5 Numerical Results

In this section we shall further develop the LSM algorithms, and give some
results of numerical experiments that illustrate properties of the LSM.

The numerical results all use synthetic data computed using a Galerkin
boundary element method based on piecewise linear finite elements due to
Giebermann (see [8] for details of the implementation of the method and an
analysis of its convergence characteristics).

From the Galerkin scheme, we obtain an approximation uBEM
∞ of u∞

at the measurement points θ̂j , j = 1, . . . , n. Having computed this finite
element far field pattern, we add noise to the data by defining

ua
∞(θ̂j , θ̂`) = uBEM

∞ (θ̂j, θ̂`) + θχj,` , 1 ≤ j, ` ≤ n



5 Numerical Results C452
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Figure 4: Here we show plots of 1/‖g‖l2 as a function of x ∈ [−2, 2] for
y = z = 0 using the unit sphere calibration scatterer. The values have
been normalized so that the maximum is unity. The best choice of cut-off
parameter is easy to find since we know the geometry. The first row displays
the results for the farfield pattern of a point source as right hand side, the
second row shows the results for the farfield pattern of a dipole. Legend:
variant (I), variant (II)
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where χ`,m is drawn from a sequence of uniformly distributed random num-
bers in (−1, 1). The error parameter θ is chosen so that if ABEM is the matrix
for the data uBEM

∞ and if A is the matrix using ua
∞, then

‖A − ABEM‖ = 0.05

using the spectral norm. Thus we introduce 5% noise on the finite element
solution and choose δ = 0.05. This is likely to underestimate the true error
in the data.

Figure 6 shows the results for the reconstruction of various objects. The
first column displays the original shape, the second one displays the recon-
struction due to variant (I) and the last column shows the reconstruction by
using variant (II). All reconstructions are for sound soft obstacles.

In the first row we present the reconstruction of a star like region where
the measurement was taken for 42 directions and 5% noise. The second
row displays the results for a dolphin and the third row displays that several
objects can be reconstructed. Finally, the last row displays the reconstruction
of an object which has a rather complicated topological structure.

Finally, Figure 5 displays the results for the reconstruction of penetrable
objects for k = 2. Here, the refractive index is n(x) = 1−I(|||x−x1|||)− 1

2
I(|||x−

x2|||) with the inclusion I(r) = 1/2(1+ cos(2πr)) for r ≤ 1/2 and I(r) = 0 for
r > 1/2. For the reconstruction we use the scattered field us instead of u∞
as data. In contrast to our previous experiments, the measurements are take
for the scattering of point sources located above the objects. Although we
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Original variant (I) variant (II)

−1

0

1 −1

0

1

−1

−0.5

0

0.5

1

1.5

2

−1

0

1 −1

0

1

−1

−0.5

0

0.5

1

1.5

2

−1

0

1 −1

0

1

−1

−0.5

0

0.5

1

1.5

2

Figure 5: This figure shows the reconstruction of two penetrable objects
without added noise. Here, the measurements are taken from the scattering
of 5 × 5 point sources located above the objects.

have a limited apparature, the linear sampling methods gives good results
even in the lower parts of the objects.

In order to apply the linear sampling method the nearfield measurements,
we replace the farfield operator F by an operator N which has the nearfield
data as a kernel. Then we can proceed in the same manner as for the farfield
operator.

6 Conclusion

We have proposed an efficient scheme for implementing the linear sampling
methods for solving the inverse problem. We have demonstrated that discon-
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Original shape variant (I) variant (II)
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Figure 6: Here, and continued on the next page, we show the results for the
linear sampling method for the reconstruction of various sound soft obstacles.
The first column displays the original shape of the scatterer, whereas the
second and third column shows the reconstruction due to the variant (I) and
(II) respectively.
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Original shape variant (I) variant (II)
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Figure 6: continued.
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nected scatterers as well as complicated topologies can be handled without
difficulty. Furthermore, we have shown that the method can also solve the
inverse scattering problem for penetrable objects.
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