
ANZIAM J. 48 (CTAC2006) pp.C233–C248, 2007 C233

Sparse preconditioners for dense complex
linear systems arising in some radar cross

section computations

M. Ganesh1 S. C. Hawkins2

(Received 28 July 2006; revised 10 April 2007)

Abstract

We present a sparse preconditioner for efficient iterative solution
of large dense linear systems that arise in radar cross section compu-
tations for a perfectly conducting scatterer using a high order surface
integral equation algorithm. The algorithm allows the linear systems
to be assembled efficiently but overall efficiency of the method can only
be achieved using iterative solvers with an appropriate preconditioner.
We demonstrate the effectiveness and efficiency of our preconditioner
for electromagnetic scattering linear systems with tens of thousands
of unknowns arising in radar cross section computations for small to
medium electromagnetic-sized scatterers.
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1 Introduction

The radar cross section (rcs) of an object indicates how visible (or invisi-
ble) the object is when illuminated by an electromagnetic wave. Numerical
approximations to the rcs are an essential tool for designing objects that
must not be visible, for example stealth aircraft. An efficient high order al-
gorithm for computing the rcs of a perfectly conducting obstacle D (with
surface ∂D) is described by Ganesh and Hawkins [6], a variant of an earlier
method [7]. The rcs is induced by an incident plane wave

Ei(x) = ikp̂0e
ikx·bd0 , H i(x) = ik(d̂0 × p̂0)e

ikx·bd0 ,

impinging on the obstacle. Here d̂0 is the direction of the incident wave,
p̂0 is its polarization (perpendicular to d̂0), and k is the wavenumber of the
incident wave. The resulting scattered electromagnetic field [E,H ] satisfies
the time-harmonic Maxwell equations

curlE(x)− ikH(x) = 0 , curlH(x) + ikE(x) = 0 , x ∈ R3 \ D̄ , (1)

the Silver–Müller radiation condition

lim
|x|→∞

[H(x)× x− |x|E(x)] = 0 , (2)
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and the perfect conductor boundary condition

n(x)×E(x) = −n(x)×Ei(x) =: f(x) , x ∈ ∂D , (3)

where n(x) denotes the unit outward normal at x ∈ ∂D . The rcs is com-
puted from the far field of E. Two types of rcs are of particular interest,
depending on whether the transmitter and receiver are apart or co-located:

1. the rcs for all directions x̂, with a fixed incident direction d̂0;

2. the rcs for all directions x̂, with varying incident directions d̂0 = −x̂ .

These are the bistatic and monostatic rcs respectively [8]. Usually the
bistatic and monostatic rcs are represented by their values at a discrete
set of measurement directions. In the monostatic case the Maxwell equa-
tions (1) must be solved with a different boundary condition for each evalu-
ation direction, because the boundary condition (3) depends on the incident
wave direction. Hundreds of measurement directions are required to resolve
the monostatic rcs, whose complexity depends on the shape of the perfect
conductor and its diameter compared to the incident wavelength.

The preconditioning approach in this work is focused on matrices arising
from a particular high order algorithm [6]. Implementation of that fully
discrete Galerkin algorithm [6] requires solution of linear systems involving
a large, dense, and non-Hermitian matrix with right hand sides depending
on the incident wave. In the case of monostatic rcs computations, the
discretized electromagnetic scattering matrix is fixed and the right hand side
changes for each evaluation direction. Using the high order algorithm [6] one
computes accurate approximations to the rcs of medium electromagnetic-
sized obstacles using a few tens of thousands of unknowns [6]. Linear systems
of this size are solved using the LU factorization of the matrix. This is
advantageous in monostatic rcs computations because once the matrix has
been factorized, the linear system can be solved for many right hand sides at
little extra cost.
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Table 1: Comparison of the wall time required to setup and factorize the
electromagnetic scattering matrix on a cluster of eight nodes, with each node
having two dual-core 2 GHz Opteron processors.

Unknowns matrix setup time LU factorization time
17326 1030 s 380 s
22186 1670 s 882 s
27646 2920 s 1660 s
33706 4390 s 2950 s
40266 7060 s 4980 s

It is well known that (for three dimensional problems) the matrix setup
time in standard Galerkin boundary integral algorithms is usually higher
than the matrix solver time, due to evaluation of a quadruple integral (or
double surface integral) for each entry of the Galerkin matrix. Efficiently set-
ting up the Galerkin boundary integral matrix is crucial for fast algorithms.
Using our high order algorithm and efficient matrix setup techniques [6], we
compute the discretized N×N electromagnetic scattering matrix in O(N2.5)
operations. (Also, the algorithm [6] requires fewer unknowns than many
industrial standard algorithms.) However, the LU factorization of a dense
matrix typically requires O(N3) operations. Table 1 compares the wall time
required to set up and factorize various size matrices arising in our algorithm
on a distributed memory parallel cluster architecture. Both matrix assembly
and factorization are performed in parallel. The matrix is stored by columns
in a wrapped interleaved storage. The LU factorization is computed by a
column oriented routine with blocking. For small N , the LU factorization is
fast compared with the matrix setup, but for large N , the LU factorization
cost becomes significant. Thus we are motivated to solve the linear system
more quickly using an iterative solver.

Since the surface integral based electromagnetic scattering matrices are
complex, dense, and non-Hermitian, the Generalized Minimal Residual algo-
rithm (gmres) [11] is a natural choice for the iterative solver, and we use it
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in this work combined with efficient sparse preconditioners. Fast solution of
linear systems using iterative solvers requires a well conditioned iteration ma-
trix. The matrix produced by our algorithm is generally not well-conditioned,
and becomes more ill-conditioned with increasing frequency of the incident
wave, and with increasing complexity of the scattering object. This article
presents a preconditioner that improves the conditioning of the iteration ma-
trix and allows us to solve our linear systems iteratively with just a few tens
of iterations. The preconditioner is also cheap to compute.

Preconditioners are well established for linear systems involving sparse
matrices. In the case of linear systems involving dense matrices, we require
that the preconditioner be sparse to reduce memory use and minimize cpu
time. Such preconditioners can be computed directly from the discretized
surface integral equation matrix using a sparse approximate inverse tech-
nique [1, 9]. Computation of a sparse approximate inverse preconditioner
can be accelerated if a sparse approximation to the scattering matrix is used,
without degrading significantly the quality of the preconditioner [1, 2]. An-
other approach is to precondition using the inverse of some easily inverted
sparse approximation to the scattering matrix [4]. Alternatively, standard
sparse matrix preconditioning techniques can be applied to a sparse approx-
imation of the matrix [10, 13]. Techniques based on incomplete factorization
of a sparse approximation to the matrix have been tested for matrices aris-
ing from boundary element schemes for electromagnetic scattering [2, 3] but
were found to be poor in that setting. However, we show that for the linear
systems arising in our high order algorithm, such techniques produce very
effective preconditioners.

Section 2 outlines the fully discrete Galerkin scheme that induces the
electromagnetic scattering linear systems considered. Section 3 describes
our preconditioner and presents numerical results for several test objects at
a range of frequencies demonstrating that our preconditioner reduces the
number of required gmres iterations by several hundreds.
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2 Boundary integral formulation

Our algorithm [6] is based on the boundary integral formulation for (1)–(3).
The rcs is computed from the tangential density w, which solves the surface
integral equation

w(x) + (Mw) (x) = 2f(x) , (4)

with the modified magnetic dipole operator

(Ma) (x) = 2

∫
∂D

n(x)× curlx
{

Φ(x,y)[I − n(y)n(y)T ]a(y)
}
ds(y) , (5)

for x ∈ ∂D , where Φ is the fundamental solution of the Helmholtz equa-
tion [5, Equation (2.1)]. The tangential projection operator I − n(y)n(y)T

is introduced for technical reasons; it allows the use of a non-tangential basis
for the solution of (4) by the Galerkin method.

We assume that the perfect conductor surface ∂D is parametrized by a
bijective map q : ∂B → ∂D , where ∂B denotes the unit sphere. Under this
assumption, the surface integral equation (4) can be rewritten as a surface
integral equation on the unit sphere,

W (x̂) +MW (x̂) = F (x̂) , x̂ ∈ ∂B , W = w ◦ q , F = f ◦ q , (6)

where the surface integral operator M is derived from M following Ganesh
and Hawkins [7].

Our algorithm [6] solves (6) using a fully discrete Galerkin scheme. The
ansatz space for the Galerkin scheme is based on an N(= 3(n + 1)2 − 2)
dimensional space spanned by the vector spherical polynomials

Y
(1)
l,j =

1√
l(l + 1)

GradYl,j , Y
(2)
l,j = ν × Y (1)

l,j , Y
(3)
l,j = νYl,j , (7)

for 0 ≤ l ≤ n , |j| ≤ l (for convenience we define Y
(1)
0,0 = 0 = Y

(2)
0,0), where

the Yl,j are spherical harmonics [6] and ν is the unit outward normal to ∂B.
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Our Galerkin approximation to the solution W of (6) is

W n =
n∑

l=0

∑
|j|≤l

3∑
ek=1

xljekY (ek)
l,j ,

where the coefficients xljek are computed by solving the linear system

Ax = b , (8)

where A = I +M ,

Ml′j′k′,ljek = 〈M′Y
(ek)
l,j , Y

(k′)
l′,j′〉 , bl′j′k′ = 〈f , Y (k′)

l′,j′〉 ,

and M′ is a fully discrete approximation to M [6]. The inner product 〈·, ·〉
on ∂B is a quadrature approximation to the L2 inner product [6]. The N×N
matrix A is dense, complex, and non-Hermitian. The matrix is assembled in
O(N2.5) operations using an efficient assembly scheme [6].

3 Preconditioner and numerical experiments

To accelerate the convergence of gmres we introduce preconditioning, and
solve the right preconditioned system

AS−1y = b , x = S−1y , (9)

where the matrix S is chosen so that AS−1 is well conditioned, and vector
products with S−1 are cheap to compute.

Efficient preconditioning requires that S be a sparse approximation to A.
Several strategies for choosing S are described by Carpentieri et al. [2]. Be-
cause our Galerkin basis is globally supported, we use an algebraic method
to obtain a sparse approximation S = (sij) to A = (aij) ,

sij =

{
aij , if |aij| > τ maxî |aîj|,
0 , otherwise.
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The thresholding parameter τ is chosen to give sufficiently good approxima-
tion, but not make S too dense. This column-wise thresholding strategy can
be performed in parallel without communication between cpus, because A is
stored by columns.

The matrix S can be inverted by computing a sparse LU factorization,
but LU factorization generally produces lots of fill-in, which increases the
required storage and the cost of the factorization. In this work we reduce
fill-in by approximately inverting S using an incomplete LU factorization,
where small entries in the LU factors are discarded. We use the Sparskit
routine ilut [12] modified for complex matrices, with drop tolerance ε for L
and U . Although incomplete LU factorization based preconditioners were
found to be poor in some studies [2, 3], results reported in these references
used ILU(0), which does not allow any fill-in. We show below that our
preconditioner, which uses ILUT(ε), is very effective for our algorithm.

We demonstrate the accelerated convergence obtained with our precondi-
tioner for rcs computations. The high order algorithm yields very accurate
approximations to the rcs [6], and so we require very accurate solutions to
the resulting linear system. In all experiments in this section, we terminate
the gmres iterations when the residual norm has been reduced by a factor
of 10−10. In our tables, a × indicates that gmres has not converged to this
accuracy within a total of 1000 iterations. We allow this relatively large num-
ber of iterations so that we can demonstrate convergence of gmres (without
preconditioning) for several of our test problems.

All cpu times presented in this section are the wall time measured on a
cluster with five nodes, with each node having two dual-core 2 GHz Opteron
processors. We use all five nodes forN = 27646 unknowns, but forN < 27646
we use only one node. In our experiments the sparse preconditioner is com-
puted in serial on a single node. Parallel computation of the preconditioner
is possible—parallel incomplete LU factorization codes are available [11] but
are not used in this work. To develop parallel LU factorization codes for
general sparse matrices is non-trivial. In almost all of our experiments the
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Figure 1: Bean and fountain shaped obstacles.

time required to compute the preconditioner is very small compared to the
matrix assembly time.

We remark that the preconditioner can be easily stored and used to accel-
erate solutions for monostatic rcs computations involving many right hand
sides. We use compressed sparse column storage for the preconditioner. In
our tables preconditioner density is the density of the combined ILU factors
of the preconditioner, computed as the total number of nonzeros, expressed
as a percentage of N2.

The linear systems that we solve arise in rcs computations for four differ-
ent perfectly conducting scatterers: a sphere, sph(siz obs); an ellipsoid with
aspect ratio 4 : 3 : 2 , ell(siz obs); a bean shaped obstacle, bean(siz obs); and
a fountain shaped obstacle, fount(siz obs). The bean and fountain shaped
obstacles are as in Figure 1. Here siz obs is the diameter of the obstacle. In
general, the difficulty of the problem depends on the shape of the obstacle
and its electromagnetic-size siz obs/λ, where λ = 2π/k is the wavelength of
the incident wave. If the frequency of the incident wave is ω, then λ = c/ω
where c is the speed of light.

The effectiveness of the sparse preconditioner is demonstrated in Table 2
where we give the number of iterations and cpu time required to solve the
linear system using gmres and preconditioned gmres. The incident wave
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has horizontal incident direction and azimuthal angle 90.0◦. In the tables,
pgmres denotes gmres preconditioned with our preconditioner with thresh-
olding parameters τ = ε = 10−3 as described above. gmres without precon-
ditioning converges only in four of eight test problems, and even in the cases
where it converges the number of iterations are much higher than pgmres,
leading to substantially higher cpu time. In general the number of iterations
required to solve the linear system varies with the incident wave direction.
We have performed similar comparisons for a range of incident directions
with qualitatively similar results to those reported in Table 2.

In Tables 3 and 4 we demonstrate that the number of iterations required
with our preconditioner undergoes little growth as the incident wave fre-
quency increases. Similar behaviour was obtained for all objects tested.

In Table 5 we present results for a sparser variant of our preconditioner
obtained with parameter τ = 10−2 . Using the sparser preconditioner sub-
stantially reduces the time required to assemble the preconditioner. For
example, the assembly time for the bean(16λ) case with τ = 10−2 is almost
half that for τ = 10−3 . On the other hand, the preconditioner obtained
with τ = 10−2 requires more gmres iterations than the preconditioner with
τ = 10−3 . The best choice of preconditioning parameter τ will depend on
the number of linear systems to be solved. In particular, for monostatic rcs
computations it is desirable to have fewer iterations.

4 Conclusions

We have demonstrated an efficient and effective preconditioner for linear sys-
tems arising in a high order Galerkin scheme for rcs computations. Using
this preconditioner and gmres, we are able to solve the linear systems effi-
ciently to simulate three-dimensional scattered fields.
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Table 2: Comparison of cpu time and number of iterations for pgmres
and gmres with incident wave direction φ = 90.0◦ .

gmres pgmres
itns preconditioner itns

Obstacle unknowns
tsolve density assembly tsolve

536 9
bean(8λ) 13066

304.3 s
4.973% 101.6 s

7.9 s

641 6
fount(8λ) 13066

370.7 s
0.458% 17.3 s

4.7 s

211 2
sph(16λ) 13066

112.3 s
0.008% 16.9 s

2.3 s

14
ell(16λ) 13066 × 7.715% 131.0 s

12.9 s

15
bean(16λ) 27646 × 10.552% 2729.8 s

28.8 s

7
fount(16λ) 27646 × 0.382% 168.8 s

6.6 s

297 2
sph(24λ) 27646

246.8 s
0.004% 163.8 s

2.4 s

15
ell(24λ) 27646 × 7.386% 1174.4 s

25.0 s
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Table 3: Comparison of cpu time and number of iterations for pgmres
and gmres for incident wave direction φ = 90.0◦ .

gmres pgmres
itns preconditioner itns

Obstacle unknowns
tsolve density assembly tsolve

16 2
sph(λ) 766

0.0 s
0.131% 0.1 s

0.0 s

100 2
sph(8λ) 3886

5.0 s
0.026% 1.4 s

0.2 s

211 2
sph(16λ) 13066

112.3 s
0.008% 16.9 s

2.3 s

297 2
sph(24λ) 27646

246.8 s
0.004% 163.8 s

2.4 s

Table 4: Comparison of cpu time and number of iterations for pgmres
and gmres for incident wave direction φ = 90.0◦

gmres pgmres
itns preconditioner itns

Obstacle unknowns
tsolve density assembly tsolve

31 5
fount(λ) 3886

1.6 s
1.106% 1.5 s

0.4 s

641 6
fount(8λ) 13066

370.7 s
0.458% 17.3 s

4.7 s

7
fount(16λ) 27646 × 0.382% 168.8 s

6.6 s
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Table 5: Comparison of cpu time and number of iterations for pgmres
with τ = 10−2 and gmres for incident wave direction φ = 90.0◦ .

gmres pgmres
itns preconditioner itns

Obstacle unknowns
tsolve density assembly tsolve

536 30
bean(8λ) 13066

304.3 s
2.913% 57.5 s

22.8 s

641 11
fount(8λ) 13066

370.7 s
0.232% 17.0 s

8.3 s

211 2
sph(16λ) 13066

112.3 s
0.008% 16.9 s

2.1 s

105
ell(16λ) 13066 × 4.937% 82.1 s

83.9 s

197
bean(16λ) 27646 × 6.727% 1522.8 s

285.1 s

26
fount(16λ) 27646 × 0.257% 165.1 s

20.5 s

297 2
sph(24λ) 27646

246.8 s
0.004% 164.4 s

2.6 s

214
ell(24λ) 27646 × 4.579% 647.6 s

277.2 s
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