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Recovery of the boundary data for a linear
second order elliptic problem with a nonlocal

boundary condition
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Abstract

We study a linear elliptic partial differential equation of second
order in a bounded domain Ω ⊂ RN , with nonstandard boundary
conditions on a part Γ of the boundary ∂Ω. Here, neither the solution
nor its normal derivative are prescribed pointwise. Instead, the av-
erage of the solution over Γ is given and the normal derivative along
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Γ has to follow a prescribed shape function, apart from an additive
(unknown) constant. We prove the well-posedness of the problem and
provide a method for the recovery of the unknown boundary data.
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1 Introduction

The problem of parameter identification from nonstandard boundary con-
ditions (bcs) in boundary value problems (bvps), originating from various
engineering disciplines, is of growing interest. Standard (Dirichlet, Neumann
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and Robin type) bcs which are prescribed pointwise are not always ade-
quate, as it depends on the physical context which data can be measured
at the boundary of the physical domain. In some cases, it is not possible
to prescribe the solution u (pressure, temperature, . . . ) or the flux q · ν
pointwise, because only the average value of the solution or of the total flux
can be measured along some boundary part Γ. In case that

∫
Γ
u or

∫
Γ
q ·ν is

prescribed, we are dealing with a nonlocal bc. This type of bc is not suffi-
cient in order to determine the solution uniquely. One needs some additional
information, resulting from other physical arguments, e.g., about the shape
of u or of q · ν along Γ. For instance, nonstandard bcs of the type

u = c ∈ R (unknown) on Γ,

∫
Γ

−K∇u · ν = s (given), (1)

appear in the modelling of soil venting (cf. [2]). Here u stands for the squared
air pressure, K denotes the air–transmissivity of the soil matrix, and Γ rep-
resents the boundary of an ”extraction well” or pump. The bcs can be
interpreted as follows. On one hand, the total amount of extracted air can
be measured; on the other hand, one can assume the air pressure along the
boundary of an extraction well to be constant, however unknown. The exis-
tence of a solution for bvps with bcs including the type (1) has been proved
in [2].

The dual type of bcs, viz

q · ν = c ∈ R (unknown) on Γ,

∫
Γ

u = U (given), (2)
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appears in the modelling of some electromagnetic field problems in electric
machinery (cf. [4]). Moreover, it also has a physical interpretation in the
above mentioned context of soil venting. For a single well experiment in
a homogeneous soil matrix one may assume that the inflow of air into the
well tube is constant, but unknown, while the average pressure at the well
is given. Here, some pressure variations along the boundary of the well are
allowed for.

The main goal of this paper is to study a class of 2nd order linear elliptic
pdes with bcs of a type including (2). We prove the existence and the
uniqueness of the solution, and we outline a method for constructing it in
terms of the solution of some auxiliary bvps with standard (i.e. pointwise)
bcs. In particular, the unknown flux and the trace of the solution at Γ are
determined.

2 Problem setting

Let Ω ⊂ RN be an open bounded domain with a Lipschitz continuous
boundary ∂Ω, which consists of a finite number of disjoint parts, i.e., ∂Ω =
ΓD ∪ ΓN ∪n

i=1 Γi.
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We consider the following bvp:

∇ · (−Adif∇u − aconu) + asouu = f in Ω (3a)

u = gDir on ΓD (3b)

(−Adif∇u − aconu) · ν − gRobu = gNeu on ΓN (3c)

(−Adif∇u − aconu) · ν = qi + ci on Γi (3d)∫
Γi

u = Ui (3e)

for a given set of values Ui ∈ R and a given set of shape functions qi, (i =
1, . . . , n). Here, the normal component of the flux q is prescribed on Γi by
the shape function qi, up to an additive unknown real constant ci, which has
to be determined as a part of the problem.

Consider the space

V = {ϕ ∈ W 1,2(Ω) | ϕ = 0 on ΓD},
where W 1,2(Ω) stands for the standard first-order Sobolev space on Ω, en-
dowed with the ‖·‖1,2,Ω-norm. We define the bilinear form a on V × V by

a(u, v) =

∫
Ω

[Adif∇u + aconu] · ∇v +

∫
Ω

asouuv +

∫
ΓN

gRobuv.

We assume the form a to be V -elliptic, i.e.,

∃C0 > 0 : a(w, w) ≥ C0 ‖w‖2
1,2,Ω , ∀w ∈ V. (4)
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For a set of conditions on the data functions Adif , acon, asou and gRob, enter-
ing (3), which ensure the V -ellipticity of a, we may refer to [1, p.1227 and
p.1245]. In addition, the functions f, gDir, gNeu and qi obey the conditions

f ∈ L2(Ω), gDir ∈ L2(ΓD), gNeu ∈ L2(ΓN) and qi ∈ L2(Γi), i = 1, . . . , n.
(5)

3 Uniqueness and existence

First, we prove the uniqueness of the solution of the bvp (3). In turn, this
uniqueness will be used in the proof of the existence theorem.

Theorem 1 (uniqueness) There exists at most one solution of the bvp (3).

Proof: Assume that there exist two solutions u and w of (3). Then, we
subtract the corresponding pdes, we multiply the result by u − w and we
integrate the equality obtained over Ω. Applying Green’s theorem, we have∫

Ω
[Adif∇(u − w) + acon(u − w)] · ∇(u − w) +

∫
Ω

asou(u − w)2

− ∫
∂Ω

[Adif∇(u − w) + acon(u − w)] · ν(u − w) = 0.
(6)

The integral over ∂Ω can be simplified as follows. As u − w = 0 on ΓD and
as moreover from (3d) the normal component of the flux of u − w on Γi is
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constant, we have∫
∂Ω

[Adif∇(u − w) + acon(u − w)] · ν(u − w)
= − ∫

ΓN
gRob(u − w)2 +

∑n
i=1 [Adif∇(u − w) + acon(u − w)] · ν ∫

Γi
(u − w)

= − ∫
ΓN

gRob(u − w)2,

where in the last equality we have invoked the nonlocal bc (3e). Conse-
quently, (6) reduces to

a(u − w, u− w) = 0,

from which we conclude that u = w on account of the V –ellipticity (4). ♠
We set up a constructive proof of the existence of a solution of the bvp (3).

The ideas underlying the construction of the solution are as follows.

At each boundary part Γi, (i = 1, . . . , n), two conditions are imposed,
one of them having a nonlocal character, the other containing an unknown
parameter. When we omit the nonlocal (integral) side condition at each
Γi and we suppose the constants ci to be given, the resulting bvp is well–
posed. We investigate the dependence of the corresponding solution on the
constants ci, (i = 1, . . . , n). This idea will be combined with the principle of
linear superposition to find a set (c1, . . . , cn) for which also the nonlocal bcs
at Γi hold, (i = 1, . . . , n). Thus, we consider two types of auxiliary problems.
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First, we take into account the source function f , the bcs on the Dirichlet
and the Neumann part of ∂Ω and the shape functions Γi, i = 1, . . . , n:


∇ · (−Adif∇v − aconv) + asouv = f in Ω
v = gDir on ΓD

(−Adif∇v − aconv) · ν − gRobv = gNeu on ΓN

(−Adif∇v − aconv) · ν = qi on Γi, i = 1, . . . , n.

(7)

Next, for i = 1, . . . , n, we introduce a function zi by:


∇ · (−Adif∇zi − aconzi) + asouzi = 0 in Ω
zi = 0 on ΓD

(−Adif∇zi − aconzi) · ν − gRobzi = 0 on ΓN

(−Adif∇zi − aconzi) · ν = 1 on Γi

(−Adif∇zi − aconzi) · ν = 0 on Γj , j 6= i.

(8)

Each of these auxiliary problems has a unique solution (see, e.g., [3]).

Now, for any α = (α1, . . . , αn) ∈ Rn, we define the function uα as

uα = v +
n∑

i=1

αizi. (9)

By the linearity of the bvps (7)–(8), one easily gets that uα, (9), solves the
following problem:


∇ · (−Adif∇uα − aconuα) + asouuα = f in Ω
uα = gDir on ΓD

(−Adif∇uα − aconuα) · ν − gRobuα = gNeu on ΓN

(−Adif∇uα − aconuα) · ν = qi + αi on Γi, i = 1, . . . , n.

(10)
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Next, we aim at determining the appropriate value of the parameter α,
for which the solution uα of (10) also satisfies the n side conditions

Pi(uα) ≡
∫

Γi

uα = Ui, i = 1, . . . , n. (11)

By the linearity of the integral operator Pi, we can write

Pi(uα) = Pi(v) +

n∑
j=1

αjPi(zj).

Hence, the conditions (11) give rise to the following linear algebraic system:


P1(z1) . . . P1(zn)
...

. . .
...

Pn(z1) . . . Pn(zn)






α1
...

αn


 =




U1 − P1(v)
...

Un − Pn(v)


 . (12)

Now, we can prove the existence of a solution of the bvp (3).

Theorem 2 There exists a solution of the bvp (3).

Proof: We only need to show that the matrix P = (Pi(zj))i,j of the linear
algebraic system (12) is regular. To this end, assume that it is singular. Then
at least one of its columns is a linear combination of the others. Without



3 Uniqueness and existence C527

loss of generality we may suppose that it concerns the last column, i.e., that
there exists a set of coefficients λ1, . . . , λn−1 ∈ R such that

Pj

(
zn −

n−1∑
i=1

λizi

)
= 0, for j = 1, . . . , n. (13)

Introduce the function w = zn −
∑n−1

i=1 λizi. On account of (8) and (13), this
function is a solution of the following bvp:

∇ · (−Adif∇w − aconw) + asouw = 0 in Ω
w = 0 on ΓD

(−Adif∇w − aconw) · ν − gRobw = 0 on ΓN

(−Adif∇w − aconw) · ν = ci (const) on Γi, i = 1, . . . , n
Pi(w) = 0 i = 1, . . . , n.




Clearly, this problem has the zero function as a trivial solution. However, by
Theorem 1, this trivial solution is the only one. We conclude that

zn =

n−1∑
i=1

λizi. (14)

We recall that the normal components of the flux of zi vanish on Γn, when
i 6= n, see (8). Thus, (14) implies

(−Adif∇zn − aconzn) · ν = 0 on Γn,
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which contradicts the bc on Γn, imposed on zn, see (8). Consequently, the
matrix P is regular. The unique solution of (3) is then defined by the rela-
tion (9), where α is the unique solution of the algebraic system (12). ♠
We emphasize that the proof of Theorem 2 has a constructive character.
First, one has to solve the well–posed auxiliary problems (7)–(8) with stan-
dard (i.e., pointwise) bcs. The desired solution will be an appropriate linear
combination of the solutions of these auxiliary bvps. The weights α1, . . . , αn

of this linear combination are determined as the solution of a linear algebraic
system. Moreover, the values α1, . . . , αn obtained determine the values of the
normal component of the flux at the respective boundaries Γ1, . . . , Γn. Of
course, also the initially unknown traces of the solution of (3) on Γ1, . . . , Γn,
can now be evaluated from the constructed function uα.

4 Numerical experiments

4.1 First example

Consider the geometrical situation shown in Figure 1a, corresponding, phys-
ically, to some soil venting facility, as mentioned in the introduction. The
domain Ω is a circle with radius 2, which has four circular holes with radius
0.2. Here, ΓP represents a passive well (an opening to the atmosphere), while
Γ1, Γ2 and Γ3 represent active wells (pumps). Both the domain and the pas-



4 Numerical experiments C529

sive well are centred at the origin (0, 0), while Γ1, Γ2 and Γ3 are centred at
(1.5, 0), (−1.2, 0.5) and (0,−1.), respectively.

We consider the following problem:


−∆u = 0 in Ω
u = 0 on ΓP

−∇u · ν = 0 on ΓN

−∇u · ν = ci (unknown constant) on Γi, i = 1, 2, 3∫
Γi

u = Ui i = 1, 2, 3,

(15)

with U1 = −0.1, U2 = −0.2 and U3 = −0.15.

We apply the method of Section 3. As the bvp (7) is now completely
homogeneous, we have v = 0. For the approximation of the auxiliary prob-
lems (8), we set up a finite element method with continuous, piecewise linear
polynomial functions on a triangular mesh on Ω, consisting of 87552 triangles.

The resulting linear algebraic system of the type (12) has the solution

α1 = 0.1565868721, α2 = 0.3666216670, α3 = 0.2920042558. (16)

The contour lines for the corresponding solution uα, cf. (9), are shown in
Figure 1b.

To assess the accuracy of the method, we have—conversely—considered
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Figure 1: (a) The domain Ω and its boundary parts; (b) contour lines for
uα



4 Numerical experiments C531

the problem 


−∆u = 0 in Ω
u = 0 on ΓP

−∇u · ν = 0 on ΓN

−∇u · ν = αi on Γi (i = 1, 2, 3),

the values of αi (i = 1, 2, 3) being given by (16). This classical bvp is solved
by the fem mentioned above. When evaluating the line integrals over Γi for
the corresponding approximate solution, the values Ui, (i = 1, 2, 3), imposed
in (15), are recovered exactly.

In general, because of the proposed solution strategy, the error committed
using fems for this type of problem will be of the same order as the one for
a bvp with classical bcs.

4.2 Second example

Let Ω = (−1, 1)× (−1, 1). The boundary ∂Ω is split into three parts ΓD, ΓN

and Γn, as shown in Figure 2. We consider the following bvp


−∆u = 0 in Ω
u = 0 on ΓD

−∇u · ν = 0 on ΓN

−∇u · ν = q + const on Γn∫
Γn

u = −0.2 on Γn.
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Figure 2: The domain Ω and its boundary parts
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The shape function q either vanishes or takes the form q(x, y) = 1+y. We
compute the contour lines in both cases, in order to illustrate the influence
of the shape function on the flow field in the vicinity of Γn. The geometry
and the choice of the bcs may correspond to a vertical cross-section of an air
pumping well in the soil. Such a rectangular domain is normally insulated
from the bottom by an impervious layer, while it is open to the atmosphere
at the top side. At a sufficiently large distance from the well (left side), one
may assume a Dirichlet bc. The bcs on Γn describe the inflow into the well,
while the bcs on ΓN (right side) reflect some symmetry conditions.

We apply the method of Section 3. The auxiliary problems (7) and (8)
are solved by a fem with continuous, piecewise linear polynomials on an
unstructured, triangular mesh with 1776 triangles. The contour lines for
the solution are shown in Figure 3, for both cases considered. Although the
average of the solutions on Γn is the same, their behaviour is different, due
to the shape function q, which prescribes the outflow on Γn.
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Figure 3: Contour lines for uα: (a) for q(x, y) = 0; (b) for q(x, y) = 1 + y.



References C535

References
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