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Flow of a micropolar fluid bounded by a
stretching sheet
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(Received 7 August 2000)

Abstract

We consider boundary layer flow of a micropolar fluid driven by
a porous stretching sheet. A similarity solution is defined, and nu-
merical solutions using Runge-Kutta and quasilinearisation schemes
are obtained. A perturbation analysis is also used to derive analytic
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solutions to first order in the perturbing parameter. The resulting
closed form solutions involve relatively complex expressions, and the
analysis is made more tractable by a combination of offline and online
work using a computational algebra system (CAS).

For this combined numerical and analytic approach, the perturba-
tion analysis yields a number of benefits with regard to the numerical
work. The existence of a closed form solution helps to discriminate be-
tween acceptable and spurious numerical solutions. Also, the expres-
sions obtained from the perturbation work can provide an accurate
description of the solution for ranges of parameters where the numer-
ical approaches considered here prove computationally more difficult.
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1 Introduction

Micropolar fluids are those which contain micro-constituents which can un-
dergo rotation, the presence of which can affect the hydrodynamics of the flow
so that it can be distinctly non-Newtonian. The theory of this class of fluids
was originally formulated by Eringen [3] in the context of continuum fluid
dynamics. Eringen’s theory has provided a good model to study a number of
complicated fluids, including the flow of low concentration suspensions, liq-
uid crystals, blood, and turbulent shear flows. However, for real, non-trivial
flows the theory must be formulated in terms of a system of 19 partial dif-
ferential equations in 19 unknowns [1]. This has lead subsequent researchers
to consider subclasses of microfluids and/or simplified flow situations which
are more easily amenable to solution.

In this work, the steady isothermal flow of a micropolar fluid driven by a
continuous porous surface is analysed via perturbation and numerical meth-
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ods. The two-dimensional boundary layer flow caused by a moving plate or
a stretching sheet is of interest in manufacture of sheeting material through
an extrusion process. Tape casting, for example, is an important forming
operation commonly used to prepare multilayer capacitors and packages in
the ceramic industry. In this process a well-mixed ceramic slurry is usually
placed in a container with a rectangular outlet made of parallel walls and the
tape casting head is set in motion on a flat substrate. A theoretical treatment
from the viewpoint of designing the process and accounting for the realistic
non-Newtonian viscous behaviour of ceramic slurries is not available in the
open literature. However, the simplified flow situation allows an analysis
using Eringen’s model of micropolar flow to be used, while still allowing a
description of the effects arising from particle micromotions.

2 Defining Equations

The two-dimensional equations governing the isothermal, steady, laminar,
incompressible micropolar fluid in a quiescent medium are given below. For
details of the derivation see eg. Ramachandran et al. [8].
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In the above equations, u and v are the dimensional velocity components
in the x and y directions, N represents the microrotation whose direction
of rotation is in the x–y plane, ν and νs are respectively the viscosity and
microrotation (or spin-gradient) viscosity, j is the micro–inertia density, ρ is
the mass density of the fluid, κ is the microrotation coupling coefficient (also
known as the coefficient of gyroviscosity or as the vortex viscosity), and p is
the pressure. In the present work we assume that the microinertia density j
is constant.

To determine the conditions for which a similarity solution exists for this
flow problem we introduce the transformations

η = by (3a)

Ψ = axF (η) ⇒ u = abxF ′ and v = −aF (3b)

N = cxG(η) (3c)

and we consider the general conditions u(x, 0) = uw and v(x, 0) = vw for the
surface velocity components. However, in the present case the transforma-
tions invoked in (3b) imply that the velocity normal to the sheet must be
constant and the “stretching” velocity must vary linearly along the surface.
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For the microrotation, either the no-spin condition or the zero antisym-
metric component of stress condition can be chosen as boundary conditions
at the surface. In this work, the no-spin condition N(x, 0) = 0 is em-
ployed. Outside the boundary layer, the appropriate boundary conditions
are limy→∞ v = 0 and limy→∞ N = 0.

Equations (1) and (2) can now be simplified by choosing a2 = ν and
b2 = c2 = 1/ν, and by introducing the physical parameters N1 = κ/(ρν),
N2 = νs/(ρν2) and N3 = j/ν along with the similarity transformations. We
obtain

(F ′)2 − FF ′′ = (1 + N1)F
′′′ + N1G

′ (4)

N3(F
′G − FG′) = N2G

′′ − N1(F
′′ + 2G) (5)

and the transformed boundary conditions are

F ′(0) = 1, F (0) = −vw

a
= −V, G(0) = 0, lim

η→∞
F ′ = 0, lim

η→∞
G = 0

(6)

In the present work, the Nk in (4) and (5) are treated as independent pa-
rameters.

For comparison with previous studies it proves convenient to rescale the
functions and parameters using F = (1 + N1)F1, G = (1 + N1)F2, C1 =
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N1/(1 + N1), C2 = N2/N1 and C3 = N3. Equations (4) and (5) are now

F ′′′
1 = −F1F

′′
1 + (F ′

1)
2 − C1F

′
2

C2F
′′
2 = F ′′

1 + 2F2 − C3

C1
(F1F

′
2 − F2F

′
1)

(7)

In this work the values of C1, C2 and C3 were chosen to be consistent
with the inequalities µ, J > 0 and κ, νs ≥ 0 for micropolar fluids [3].

Specifically, the parameter C3 is proportional to the square of a charac-
teristic length of the microstructure. Consequently only very small values
are of interest. For example, in the studies of Hassanien & Gorla [5] and
Hady [4] the term involving C3 was neglected. Here, we also take C3 = 0 and
consider the simpler system

F ′′′
1 = −F1F

′′
1 + (F ′

1)
2 − C1F

′
2

C2F
′′
2 = F ′′

1 + 2F2

(8)

The parameter C2, however, depends on the microrotational viscosity νs

which could vary appreciably [6]. However, a limited range appears to have
been considered in previous studies, with values near C2 = 2 being most
frequently chosen (see, eg. [6, 5, 4]).

Regarding our choice of C2 values, preliminary results indicated that com-
putations for C2 > 2 were typically very stable and relatively easy to obtain.
Therefore, we have mainly considered the computationally more demanding
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range C2 ≤ 2 (numerical difficulties for small C2 were also reported in [6]).
In particular, values of C2 = 2, 1/2, 2/9 and 1/8 were chosen for comparison
of numerical results with the perturbation analysis described below.

Finally, we note that C1 can take the range of values 0 ≤ C1 < 1, where
C1 = 0 corresponds to the uncoupled case κ = N1 = 0 (where the macro-
scopic motion is unaffected by the microrotations) and C1 = 1 corresponds
to the limiting case of an infinite coupling parameter (ie. κ, N1 → ∞). This
allowable range of values of C1 motivates the perturbation analysis presented
in the next section.

3 Perturbation Analysis

Choosing C1 as the perturbing parameter, we expand the similarity functions
using the regular perturbation expansions

F1 = f0 + C1f1 + C2
1f2 + · · ·

F2 = g0 + C1g1 + C2
1g2 + · · · (9)

and substitute them into the boundary-layer equations (8).

By collecting terms in equal powers of C1, a hierarchy of ordinary differ-
ential equations for the functions fn and gn can be obtained. The first four
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equations for fn are as follows.
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For n ≥ 0, the microrotation functions gn may be obtained via solution
of the following second order equation.

C2g
′′
n − 2gn = f ′′

n (11)

The appropriate boundary conditions for equations (10) and (11) are

f0(0) = −V1 , f ′
0(0) = 1 , g0(0) = 0 ,

lim
η→∞

f ′
0 = 0 , lim

η→∞
g0 = 0 , for n = 0, (12a)

fn(0) = 0 , f ′
n(0) = 0 , gn(0) = 0 ,

lim
η→∞

f ′
n = 0 , lim

η→∞
gn = 0 , for n > 0. (12b)

3.1 Zeroth Order Solution (n = 0) for F1 and F2

The leading order equation for the stream function given in (10a) is a non-
linear, third order and autonomous ordinary differential equation. A closed
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form solution for f0 which satisfies the relevant boundary conditions is [7]

f0 = −V1 +
1 − exp(−βη)

β
= β(1 − ω) (13a)

where β =
1

2
(−V1 +

√
V 2

1 + 4) and ω = ω(η) =
exp(−βη)

β2
(13b)

To obtain the equation for the zeroth order micro-rotation g0, we let
r2 = 2/C2 and introduce (13) into equation (11) with n = 0 to obtain

g′′
0 − r2g0 = −β3r2

2
ω (14)

For the solution of this linear, second order and non-homogeneous ordi-
nary differential equation two cases must be considered, depending on the
relative values of the two positive parameters r and β. Introducing the pa-
rameter γ = r/β, solution of (14) yields

g0 =
β4

4
ηω

g′
0 =

β4

4
(1 − βη)ω

(15)
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when γ = 1, and

g0 =
β3

2

γ2

γ2 − 1
(ω − β2γ−2ωγ)

g′
0 = −β4

2

γ2

γ2 − 1
(ω − γβ2γ−2ωγ)

(16)

in the more general case where γ 6= 1. It is straight forward to show that in
the limit as γ → 1, the expressions for g0 and g′

0 given in (16) simplify to
those given in (15), as expected.

3.2 First Order Solution (n = 1) for F1

For n > 0, the differential equation (10b) for fn is non-homogeneous, third
order and linear with variable coefficients. For the case n = 1, a closed form
general solution can be obtained, and can be expressed as f1 = hc+p1, where
hc is the complementary function (cf) and p1 is a particular integral (pi).
These are discussed below.

3.2.1 Complementary Function

For all n > 0, the cf is obtained via the solution of the homogeneous part
of (10b), ie.

h′′′
c + f0h

′′
c − 2f ′

0h
′
c + f ′′

0 hc = 0 (17)
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and can be expressed as a linear combination of three independent solutions
as hc = a1hc1 + a2hc2 + a3hc3, where a1, a2 and a3 are constants.

Two of the solutions which comprise the cf are in simple closed form as

hc1 = ω, h′
c1 = −βω (18a)

hc2 = 1 + βηω, h′
c2 = βω(1 − βη) (18b)

while the third independent solution can be expressed in terms of quadratures
as

hc3 = −2 exp(−ω) + Ei(ω) + 2ωEi(ω) + ω

∫
ω

Ei(t)

t
dt

h′
c3 = β exp(−ω) − βωEi(ω) − βω

∫
ω

Ei(t)

t
dt

(18c)

where Ei(x) is the exponential integral function. The derivation of the above
results is somewhat lengthy, and further details can be found in [7].

In order to introduce algebraic simplifications, and without loss of gener-
ality, we use here a modified definition of

Ei(x) =

∫ 1/β2

x

e−t

t
dt (19)

in (18c), where the usual upper limit of positive infinity has been replaced by
1/β2. We also set the upper limit to 1/β2 for any integral of the exponential
integral that may arise, such as occurs in equation (18c).
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3.2.2 Particular integral

We consider now a particular integral to equation (10b) when n = 1. For
this third order, non-homogeneous ode two cases of γ = 1 and γ 6= 1 must
again be considered.

For γ = 1, the expression for g′
0 given in (15) is substituted into the rhs

of (10b) and a pi p1 is sought. The latter can be found by considering a trial
solution of the form p1 = c0 + c1η, which on substitution into (10b) yields
the solution given in Table 1.

Having obtained a cf and pi for this case, a general solution which sat-
isfies the necessary boundary conditions can be obtained by solving for the
constants a1, a2 and a3. The required values can be found with the assistance
of a cas, and are given in Table 2. Note that in the table, and subsequently,
we have used a0 = 1 − exp(1/β2) and b0 = log(1/β2).

For the more general case where γ 6= 1, the pi is of considerable complex-
ity, and was found with the aid of a cas (we used Mathematica 3) using a
mixture of online and offline analysis. After completion of the analysis, the
pi for γ 6= 1 was found in terms of nested quadratures. At the expense of a
loss of generality, the pi can be found in terms of no quadratures if integer
values of γ are taken. The resulting expressions are easy to evaluate, and
the solutions for p1 for γ = 2, 3, 4 are given in Table 1. For β = 1 (an imper-
meable sheet), these choices correspond to the values C2 = 1/2, 2/9 and 1/8
indicated earlier. The two smaller of these values, in particular, extend upon
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Table 1: Particular integral for n = 1 and γ = 1 → 4.
γ Particular integral p1

1 p1 = 3β
4
− β2

4
η

2 p1 = 2β
3

(−4β2 − ω log(ω) − 2β2 log(ω) − 4β2ω log(ω)
+ β2ω[log(ω)]2)

3 p1 = 9β
16

(24β4 + 3β4ω2 + 12β4 log(ω) − (1 − 24β4)ω log(ω)
− 6β4ω[log(ω)]2)

4 p1 = 8β
15

(−144β6 − 18β6ω2 + β6ω3 − 72β6 log(ω)
− (1 + 144β6)ω log(ω) + 36β6ω[log(ω)]2)

the range of C2 values used in previous studies.

Finally, once the cf and pi are known, the values of the constants in
the general solution may be determined. Here again, the labour involved is
significantly reduced by using a cas, and the required values are given in
Table 2.

The values of the constants given in Table 2, along with equations (18a,
18b, 18c) and the particular integrals given in Table 1, completely specify
the solution of the first order streamfunction f1 for the values of γ considered
here.
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Table 2: Values for the constants ai for n = 1 and γ = 1 → 4.

γ = 1 a1 −β3

4

(
a0 + 1+a0

1+β2

)

a2 −β3

4

(
1+a0

1+β2

)
a3

β
4

γ = 2 a1
2β
3

(
−3 + 4β2 + 2a0β

4 + b0 + 4β2b0 − β2b2
0 + 3+2a0β4

1+β2

)

a2
2β
3

(
−4 + 2β2b0 + 3+2a0β4

1+β2

)
a3 −4β3

3

γ = 3 a1
9β
16

(−20 + 18β2 − 24β4 − 12a0β
6 + b0

− 24β4b0 + 6β4b2
0 + 20−12a0β6

1+β2

)

a2
9β
16

(
−21 + 24β2 − 12β4b0 + 20−12a0β6

1+β2

)
a3

27β5

4

γ = 4 a1
8β
15

(−123 + 123β2 − 108β4 + 144β6 + 72a0β
8

+ b0 + 144β6b0 − 36β6b2
0 + 123+72a0β8

1+β2

)

a2
8β
15

(
−124 + 126β2 − 144β4 + 72β6b0 + 123+72a0β8

1+β2

)
a3 −192β7

5
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4 Numerical method

As a cross-check for the analysis, a shooting method using a fourth-order
Runge-Kutta algorithm and a quasilinearisation scheme were used here. For
both methods, discretisation errors were reduced by selecting step sizes and
convergence criteria small enough so that results accurate to more than 5
significant digits could be reported.

For brevity, an outline of the quasilinearisation method only is now given.
Further details can be found in [2].

Let f(j), g(j) be approximate solutions and f(j+1), g(j+1) improved solutions
for F1 and F2 respectively in equation (8). After linearization, the following
two coupled linear equations are obtained.

f ′′′
(j+1) =

[−f ′′
(j+1)f(j) + 2f ′

(j+1)f
′
(j) − f(j+1)f

′′
(j) − C1g

′
(j+1)

]
+

(
f ′′

(j)f(j) − (f ′
(j))

2
)

C2g
′′
(j+1) =

[
2g(j+1) + f ′′

(j+1)

] (20)

The numerical solution is obtained using the linear combination S =
Sp+k1Sh1+k2Sh2 where Sp and the Shi are respectively the particular integral
and complementary functions of (20). The complementary function consists
of two linearly independent functions Sh1 and Sh2 which are solutions of the
homogeneous part of (20).
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At each stage of the iterative procedure, the required conditions for Sp

and Shi at the surface are

Sp(0)(j+1) =
[−V, 1, f ′′

(j)(0), 0, g′
(j)(0)

]T

Sh1(0) = [0, 0, 1, 0, 0]T

Sh2(0) = [0, 0, 0, 0, 1]T

(21)

To satisfy the conditions at infinity (implemented on a finite domain of
length ηc), weighting coefficients k1 and k2 are calculated at each stage at
the cutoff point η = ηc from

0 = f ′
p + k1f

′
h1 + k2f

′
h2

0 = gp + k1gh1 + k2gh2

(22)

After a solution to (20) subject to (21) and (22) has been obtained it is
compared with the solution at the previous step. If convergence has not been
achieved or greater accuracy is required, the procedure above is repeated.

To initiate the iterative scheme, an initial approximate solution is needed.
For the majority of results obtained here, we have used the solution given in
equation (13) for this purpose. In general, however, any weak solution to the
governing equations may be used.
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5 Results

As part of this study, the accuracy, convergence and other computational
properties of the numerical schemes used here were thoroughly investigated.
For brevity, only our key findings are described here. In addition, the results
given below are confined to the case β = 1, ie. an impermeable stretching
sheet.

5.1 Results for C1 = 0

In Figure 1 the influence of the parameter C2 is shown when C1 = 0. For all
values of C2 considered here, the computed results for F1 shown in Figure 1(a)
using either Runge-Kutta or Quasilinearisation schemes were in excellent
agreement with the leading order solution given in (13).

In general, a computed solution for F1 which matches (13) was usually
obtained if an initial guess of −F ′′

1 (0) ≈ β was used. However, in some cases
an apparently spurious numerical solution for F1 which differs from (13)
was computed, most frequently if the iterative schemes were initiated with
−F ′′

1 (0) slightly larger than β. This alternative solution for F1 is also shown
in Figure 1(a), as computed on domain lengths ranging from ηc = 25 to 125.
It is unclear whether this second solution represents an asymptotically valid
solution to the governing equations. Although the observed changes are
small as ηc is increased, it is possible that the second solution will eventually
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(a) F1 (ηc = 25 → 125) (b) F2 (C2 = 2, 1/2, 2/9, 1/8)

Figure 1: Profiles of Streamfunction F1 and Microrotation F2 for C1 = 0
and various C2.

converge to the envelope curve described by (13) as ηc → ∞. Although not
shown here, for the case where C1 6= 0 we also found apparently spurious
numerical solutions where the solution for F1 has a similar profile to those
shown in Figure 1(a).

In Figure 1(b) the influence of the parameter C2 on the computed solution
for the microrotation F2 is shown. Here again, the computed results for F2

shown were found to be in excellent agreement with the leading order solution
given in (15) and (16).

From Figure 1(b), the observed behaviour is that the micro-rotation pro-
file both flattens and broadens as C2 increases. Although not shown, this
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trend was evident in results for C2 = 5, 10 and 50 as well, and is consistent
with a leading order analysis that F2 ≈ 0 for C2 large, presented in [7].

For C2 > 2 the computations proved to be very stable, and converged
without difficulty to a final solution even if very poor initial conditions were
used to initiate the iterative schemes. However, for C2 < 2 the opposite
was true. Accurate initial conditions were required. Further, as C2 was
decreased, we also found that we needed to reduce the domain length ηc to
avoid instability. The cutoff errors introduced by using shorter domains were
noticeable for C2 = 1/8, where the computed solution agreed with the leading
order solution for F2 given in (16) to an accuracy of about 3 significant digits
only.

As C2 was decreased, we observed that the primary source of numerical
instability arose from the computation of the microrotation equation. The
observed increase in numerical difficulties seems consistent with the bound-
ary layer behaviour of the profiles shown in Figure 1(b). Heruska et al. [6]
also noted computational difficulties for small C2 using a globally convergent
homotopy method, but did not suggest any reasons for this behaviour.

5.2 Results for C1 6= 0

We now consider the influence of the parameter C2 for values of C1 other
than zero. For brevity, sample results for C1 = 0.1 only are presented below
in order to establish the main findings (for other results see [7]).
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Figure 2: (a) Comparison of profiles of (F1 − f0)/C1 (continuous) and
f1 (dashed) for C1 = 0.1 and C2 = 2/9; (b) detail of f1 profiles for C2 =
2, 1/2, 2/9 and 1/8.
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In Figure 2(a) the computed profiles for F1 and C2 = 2/9 are compared
with the corresponding perturbation solution. For clarity, results for F1 using
(F1−f0)/C1 are compared with f1. For this case, and for C2 = 2, 1/2 and 1/8
(not shown), the differences between the compared profiles are very small. It
is clear that for C1 = 0.1, the solution for F1 using a first order perturbation
series f0 + C1f1 yields a very good approximation to the computed solution
of the governing equations.

With regard to stability, computations for the case C1 = 0.1 behaved in
a similar way to those for C1 = 0. We again had to successively reduce the
domain of integration to avoid non-convergence, particularly for the cases
C2 = 2/9 and 1/8. Compared with the results for C1 = 0, correspondingly
shorter domains were needed, indicating that the computations were rela-
tively less stable for C1 = 0.1.

In Figure 2(b) we show the complex behaviour of the perturbation solu-
tions for f1 near the surface. In contrast to the computational approaches
used here, the data for these solution curves can be obtained using a cas
without any numerical difficulties. It is clear that very close to the surface
there is initially a small positive contribution from f1 to the series solution
for F1 given in (9). Physically, the profiles indicate that when the coupling
constant C1 6= 0, the microrotational effects lead to a reduction in the skin
friction. The latter is observed in eg. fluids with extremely small polymeric
additives [3].

We also observe that as C2 decreases, the region where f1 > 0 also de-
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creases in transverse extent. Although not entirely clear from the figure, the
value of f ′′

1 (0) (which to first order is directly proportional to the reduction
in skin friction) actually increases as C2 decreases.

Finally, we note that the near wall behaviour of these profiles as C2 de-
creases is similar to that of a boundary layer where the boundary layer width
is decreasing. Compared with the uncoupled case C1 = 0, it is possible that
the observed increase in numerical difficulties for C1 = 0.1 is due to this more
complex behaviour.

6 Conclusion

In this paper, we have investigated the solutions to the boundary-layer equa-
tions for the micropolar fluid flow over a stretching sheet. We have consid-
ered in some detail the influence of the physical parameters on the similarity
solutions via a perturbation analysis and a numerical approach using Runge-
Kutta and quasilinearisation schemes.

We found that decreasing the value of the parameter C2 leads to an
intensification of the microrotation in an increasingly narrow region adjacent
to the surface. For the case of a non-zero coupling parameter C1, a more
complex near-wall profile for the streamfunction F1 is also obtained. For
this case, reducing the value of C2 leads to successive reductions in the skin
friction at the surface for the range considered.
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For the smaller of the C2 values considered here, and also for the case
where C1 6= 0, the presence of some instability in the numerical schemes
used here was attributed to the more complex near-wall flow behaviour. In
contrast, the perturbation analysis gave analytic solutions which, although
rather involved, could be evaluated without difficulty to provide data about
this complex flow, especially for parameter values where a numerical ap-
proach proved computationally more difficult.
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