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Multiscale modelling couples patches of
wave-like simulations
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Abstract

A multiscale model is proposed to significantly reduce the expensive
numerical simulations of complicated waves over large spatial domains.
The multiscale model is built from given microscale simulations of
complicated physical processes such as sea ice or turbulent shallow
water. Our long term aim is to enable macroscale simulations obtained
by coupling small patches of simulations together over large physical
distances. This initial work explores the coupling of patch simulations
of wave-like pdes. With the line of development being to water waves
we discuss the dynamics of two complementary fields called the ‘depth’
and ‘velocity’. A staggered grid is used for the microscale simulation
of the depth and velocity. We introduce a macroscale staggered grid
to couple the microscale patches. Linear or quadratic interpolation

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6137
gives this article, c© Austral. Mathematical Soc. 2013. Published May 14, 2013, as part
of the Proceedings of the 16th Biennial Computational Techniques and Applications
Conference. issn 1446-8735. (Print two pages per sheet of paper.) Copies of this article
must not be made otherwise available on the internet; instead link directly to this url for
this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/6137


Contents C154

provides boundary conditions on the field in each patch. Linear analysis
of the whole coupled multiscale system establishes that the resultant
macroscale dynamics is appropriate. Numerical simulations support the
linear analysis. This multiscale method should empower the feasible
computation of large scale simulations of wave-like dynamics with
complicated underlying physics.
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1 Introduction

Numerical simulations of complicated waves over large spatial domains includ-
ing tsunamis, floods and rivers are expensive and complex. Many researchers
are exploring multiscale models to improve the accuracy and reduce the
expense of such large scale simulations (Hou et al., 2008; Hu, 2012; Kevrekidis
et al., 2003; Roberts and Kevrekidis, 2005, e.g.). The gap-tooth scheme was
introduced and reviewed by Kevrekidis et al. (2003) and Samaey et al. (2005,
2009). The scheme uses microscale simulations on small patches of space,
coupling the simulations over the intervening space, to simulate the system
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over a macroscale. The gap-tooth method adapts to whatever microscale
simulator is provided. Roberts and Kevrekidis (2005, 2007) developed patch
coupling conditions to ensure high order accuracy in the gap-tooth scheme
for a class of dissipative systems. One aim here is to show that analogous
coupling conditions also work for weakly or non-dissipative wave dynamics.

Section 2 establishes a microscale simulation of wave dynamics on a staggered
grid. The microscale simulation is a pared down version of the equations of
the shallow water dynamics because we plan to later adapt the approach to
shallow water problems such as turbulent floods and tsunamis.

As a basic example of patch simulation of wave-like dynamics with a staggered
grid, consider the simple linear wave pdes

∂h

∂t
= −

∂u

∂x
and

∂u

∂t
= −

∂h

∂x
, (1)

where in a water wave application h and u would represent the fields of
‘water depth’ and ‘fluid velocity’. We aim to simulate the evolution of the
fields h(x, t) and u(x, t) , periodic in the x direction, on the macroscale
length L = 2π . Figure 1 exhibits a patch simulation of equation (1) through
microscale simulation on m = 10 patches, each of width l = π/15 , with
macroscale spacing D = π/5 . No computations were performed on the empty
space between the patches. Each patch appearing in Figure 1 integrates a
spatial discretisation of the pdes (1) on a microscale spatial grid of n = 9

points (not counting the boundary points within each patch), with microscale
grid spacing d = D/30 = π/150 . The microscale spatial discretisation of
equation (1) represents a finely detailed model or particle simulation which is
assumed far too expensive to use over a large domain (Kevrekidis et al., 2003,
e.g.). Section 3 introduces one scheme to couple such patches of microscale
simulators by interpolation in order to simulate the macroscale wave-like
dynamics to varying degrees of accuracy.

Figure 1 and a supplementary movie1 show that microscale waves oscillate
1http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

downloadSuppFile/6137/1111

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1111
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1111
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Figure 1: Patch simulation of the depth h (circles) and velocity u (stars)
in equation (1) on [0, 2π] at fixed time t = 100.25 , 101.25 and 102.25.
There are m = 10 patches and n = 9 microscale grid points on each patch
(excluding patch boundaries). The patches are coupled by simple linear
interpolation. A supplementary movie shows more details of the patch
simulation of equation (1).

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1111
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rapidly in comparison to the macroscale waves. Nonetheless the macroscale
waves appear to propagate unscathed by the bath of microscale vibrations.
Section 4 explores the eigenvalues of the implemented gap-tooth scheme to
support the veracity of the simulations in Figure 1 and the movie.

2 The microscale simulator

This section describes the microscale simulation of the wave-like dynamics
in each patch. Staggered microscale grids are used to represent the fields of
depth h and velocity u.

This section considers the wave-like dynamics of two fields analogous to the
water depth h(x, t) and water velocity u(x, t) . The one dimensional linear
governing equations analogous to the mass and momentum equations are

∂h

∂t
= −

∂u

∂x
, (2)

∂u

∂t
= −

∂h

∂x
− ν0u+ ν2

∂2u

∂x2
, (3)

where the parameters ν0 and ν2 are constant coefficients analogous to bed
friction and fluid viscosity respectively.

The first task is to code a microscale simulator of the linear equations (2)
and (3) via a spatial discretisation on the microscale. As shown schematically
in Figure 2 we now focus on the simulation within the jth patch. Within each
patch we use a staggered grid of n interior grid points and two boundary
points on each patch. The microscale grid spacing is d = l/(n+1) , where l is
the width of each patch. Figure 3 shows the staggered grid for the depth hj,i
and velocity uj,i at the ith point of the micro-grid of a patch: we use two
different patches depending upon whether the patch index j is odd or even.
Thus the microscale simulator discretises equations (2) and (3) on the interior
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Figure 2: the rectangle indicates that we now zoom in on the jth microscale
patch centred on a macroscale grid point Xj for a macroscale grid of spacing D.
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Figure 3: Scheme of the staggered grid points of the depth hj,i (blue points)
and velocity uj,i (magenta points) at the ith micro-grid point on the odd jth
patch (top) and the even jth patch (bottom). This diagram show the cases
for n = 5 interior grid points in each patch.
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Figure 4: Scheme of the staggered macroscale grid of patches.

of the jth patch as

dhj,i

dt
= −

uj,i+1 − uj,i−1
2d

, (4)

duj,i

dt
= −

hj,i+1 − hj,i−1
2d

− ν0uj,i + ν2
uj,i+2 − 2uj,i + uj,i−2

4d2
, (5)

The movie sampled in Figure 1 was generated by such microscale simulations
being coupled together as described in the next section.

Roberts and Kevrekidis (2005) described the gap-tooth scheme applied to
the nonlinear Burgers’ equation. Analogously, in future work we plan to
implement nonlinear dynamics in the microscale model. Then we will proceed
to simulate nonlinear water wave dynamics.

3 Couple microscale patches across gaps

This section aims to describe the wave-like dynamics via a macroscale stag-
gered grid of patches. We couple the patches by interpolating information
from neighbouring patches into boundary values for each of the microscale
patch simulators of Section 2.

As shown schematically in Figure 4, let each of m patches be centred on equi-
spaced macroscale grid points x = Xj = jD , whereD = L/m is the macroscale
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spacing and L is the length of the whole domain. Each patch has relatively
small width l. Let each patch around a macroscale grid point Xj execute
a microscale simulation of the wave-like dynamics. Section 2 introduced
that two different microscale simulations are defined for odd and even j,
and Figure 4 illustrates these simulations alternating to form a macroscale
staggered grid. The edge of each patch is a distance l/2 from its macroscale
grid point. Define the scale ratio r = l/(2D) to characterise the size of each
patch relative to the distance between neighbouring patches: when r = 1/2
the neighbouring patches meet as in holistic discretisation by Roberts (1999);
when r = 1 the patches overlap which establishes a slow manifold view of
nonlinear wave-like dynamics. When the ratio r is small, the patches form
a relatively small part of the physical domain to provide a computationally
efficient scheme for multiscale simulation.

As also shown in Figure 4, let macroscale grid values Hj = hj(Xj, t) for even j
and Uj = uj(Xj, t) for odd j. We interpolate these macroscale grid values
to provide boundary values for each microscale patch. Computationally,
all microscale simulators could execute in parallel with the only necessary
communication between patches being these macroscale grid values.2 To
interpolate the macroscale grid values we use finite difference operators. Define
a shift operator E over two patches, for example, Eh(x, t) = h(x + 2D, t)
and EUj = Uj+2 . Note the identities for discrete operators (Roberts and

2Such computational communication is synchronous as analysed herein. However,
asynchronous computation and communication could be modelled by including a couple
of intermediary variables into the dynamics between the actual macroscale value and
its use as a patch boundary value. For example, for each macroscale variable Hj one
could define two intermediaries, H ′j and H

′′
j say, with dynamics τdH ′j/dt = −H ′j +Hj and

τdH ′′j /dt = −H ′′j +H ′j for some mean delay 2τ caused by asynchronous computation. Then
the model to analyse is one where variables H ′′j , instead of Hj, were interpolated to provide
patch boundary values.
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Kevrekidis, 2005, 2007, e.g.),

centred mean µ = 1
2
(E1/2 + E−1/2) , (6)

centred difference δ = E1/2 − E−1/2 , (7)
shift E = 1+ µδ+ 1

2
δ2 . (8)

Now, the edges of the jth patch are at x = Xj±(r/2)2D which is a fraction r/2
of a shift from the macroscale grid point Xj. The corresponding shift

E±r/2 =
(
1± µδ+ 1

2
δ2
)r/2

=
µ√

1+ δ2/4
(1± µδ+ 1

2
δ2)r/2 , (9)

as µ2 = 1+ 1
4
δ2 . Expanding (9) in the Taylor series in small difference δ, and

replacing µ2 by 1+ 1
4
δ2 , the shifts to the edges of a patch are

E±r/2 =
[
µ± 1

2
rδ+ 1

8
(−1+ r2)µδ2 ± 1

48
(−r+ r3)δ3

+ 1
384

(9− 10r2 + r4)µδ4 ± 1
3840

(9r− 10r3 + r5)δ5

+ 1
46080

(−225+ 259r2 − 35r4 + r6)µδ6

± 1
645120

(−225r+ 259r3 − 35r5 + r7)δ7
]
+ O

(
δ8
)
. (10)

This expansion then empowers us to express values on the edges of the
jth patch, at x = Xj ± rD , in terms of the macroscale grid values Hj and Uj.
Thus for odd/even j we set the microscale, patch boundary, ‘depth’/’velocity’
as

(hj,uj)
∣∣
x=Xj±rD

≈
[
γµ± 1

2
γrδ+ 1

8
γ2(−1+ r2)µδ2 ± 1

48
γ2(−r+ r3)δ3

+ 1
384
γ3(9− 10r2 + r4)µδ4 ± 1

3840
γ3(9r− 10r3 + r5)δ5

+ 1
46080

γ4(−225+ 259r2 − 35r4 + r6)µδ6

± 1
645120

γ4(−225r+ 259r3 − 35r5 + r7)δ7
]
(Hj,Uj) , (11)

where the parameter γ conveniently labels the spatial extent of the interpola-
tion. The interpolation (11) couples the patches together.
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One obtains various accuracies by truncating the coupling (11) to various
orders in the label γ. For example, truncating to errors O

(
γ2
)
gives linear in-

terpolation, hj = (µ± 1
2
rδ)Hj , from the nearest neighbour patches as Figure 4

illustrates. Whereas truncating to errors O
(
γ3
)
gives cubic interpolation from

nearest and next nearest patches. The details recorded in the coupling (11),
that is to errors O

(
γ5
)
, are equivalent to interpolating a seventh order poly-

nomial through the eight neighbouring macroscale values Hj±1 , Hj±3 , Hj±5
and Hj±7 . We expect that such high order interpolation achieves high order
accuracy as it does for dissipative systems (Roberts and Kevrekidis, 2005,
e.g.).

Numerical simulations of the wave-like system (2)–(3) with coupling con-
dition (11) verifies that the proposed coupling works. Figure 5 displays a
gap-tooth simulation of the depth h and velocity u governed by a microscale
discretisation of (2)–(3) with m = 10 patches and n = 9 microscale grid
points on each patch. A fifth order polynomial is used from the coupling (11),
that is to errors O(γ4) in the label γ. The initial condition (blue), with some
random noise within each patch, smooths rapidly by ‘diffusion’ ν2uxx to a
quasi-equilibrium (green). A supplementary movie3 shows that the macroscale
wave decays slowly due to the ‘bed friction’ ν0u to a near steady state at
time t ≈ 200 .

The multiscale modelling reduces the numerical cost of the simulations for large
enough scale separation between the microscale computation and the resolved
macroscale structures. For example, when the microscale grid spacing is
d = 0.0026 , our Matlab multiscale code with ten patches on the domain takes
a computation time of 0.38 seconds in one period, whereas a corresponding
Matlab code that resolves the microscale dynamics over the whole domain
takes 21 seconds. In this example, the complete microscale simulation is
56 times slower to compute than our multiscale patch simulation. In more
spatial dimensions we expect the computational time savings to be much
larger as the fraction of space occupied by patches is expected to be much

3http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/6137/1112

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1112
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1112
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Figure 5: Patches simulations of the depth h (circles) and velocity u (stars)
in equations (2) and (3) on [0, 2π] via m = 10 patches and n = 9 microscale
grid points on each patch at time t = 0 (blue) and t = 1 (green). The scale
ratio r = 1/6 , and the coefficients ν0 = 0.01 and ν2 = 0.03 . A supplementary
movie shows the simulations over the time t = 0 : 200 .

smaller in higher dimensions.

4 Linear analysis of the coupled dynamics

This section linearly analyses the proposed gap-tooth multiscale modelling.
Our focus is on the performance of the coupling conditions so we analyse
the wave-like pdes (2)–(3), and the numerical eigenvalues of its microscale

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1112
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1112
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discretisation (4)–(5), and both on patches coupled by (11).

On the jth patch assume the fields of the depth hj and velocity uj have
solutions in the forms of

hj(x, t) = Cheλt+i(kj+`ξ) and uj(x, t) = Cueλt+i(kj+`ξ) , (12)

for microscale space variable ξ = (x − Xj)/D , the complex growth rate λ,
macroscale wavenumber k, and microscale wavenumber `. These wavenumbers
are both defined relative to the macroscale grid spacing D. Substitute the
solution form (12) into the equations (2) and (3), factor eλt+i(kj+`ξ) and obtain

λCh = −i
`

D
Cu and λCu = −i

`

D
Ch − ν0Cu − ν2

`2

D2
Cu . (13)

For non-trivial solutions for Ch and Cu the complex growth-rate must satisfy

λ2 +

(
ν0 + ν2

`2

D2

)
λ+

`2

D2
= 0 , (14)

which determines the dispersion relationship between the growth rate λ and
microscale wavenumber `.

The microscale wavenumber ` is then determined by the coupling conditions
as a function of macroscale wavenumber k. A supplementary file4 lists a
computer algebra5 program to use the coupling conditions (11) to derive the
high order characteristic equation

± sin `r+ r sin k+ 1
6
(r− r3) sin3 k+ 1

120
(9r− 10r3 + r5) sin5 k = O

(
k7
)
.
(15)

Expanding a small microscale wavenumber ` in equation (15) in a Taylor
series in the macroscale wavenumber k, we obtain from the explicitly given
terms that

` = ±k+ 1
5040

(−225+ 259r2 − 35r4 + r6)k7 + O
(
k9
)
. (16)

4http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/6137/1110

5http://www.reduce-algebra.com

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1110
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1110
http://www.reduce-algebra.com
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That is, to the order of analysis used to obtain (15) the coupling conditions (11)
ensure that the microscale wavenumber agrees precisely with the macroscale
wavenumber. This agreement ensures the high order accuracy of the gap-tooth
scheme with these coupling conditions.

The characteristic equation (15) also has solutions with non-small `. For
macroscale wavenumber k = 0 , these are ` = nπ/r for integer n. For
such large microscale wavenumber `, from (14) the growth-rate λ has large
imaginary part indicating rapid microscale oscillations/waves within patches.
These rapid microscale waves are not of interest to the macroscale dynamics—
often microscale dissipation will damp them as seen in our movies. Importantly
though, and even without dissipation, for non-zero macroscale wavenumber k
one can see that the solutions ` of the characteristic equation (15) will remain
real. Consequently, the coupling conditions (11) maintain the microscale
waves as waves; the coupling conditions do not turn the microscale waves
into unstable modes that would wreck the macroscale simulation.

Numerical eigenvalues of the dynamics confirms the stability of the gap-tooth
scheme with coupling conditions (11). Consider the microscale simulator (4)
and (5) with the coupling conditions (11) in a fifth polynominal. The fields
hj,i = 1 and uj,i = 0 , say, is a steady state. We characterise the dynamics in
the neighbourhood of this the steady state via the spectrum of the Jacobian.
Numerical differentiation of the simulation function gives a sufficiently good
approximation to the Jacobian, then standard routines compute the complete
spectrum of eigenvalues. Figure 6 plots the real (growth rate) and imaginary
part (frequency) of the numerical eigenvalues about this steady state for
one set of parameters. The arcsinh scaling of the two axes provides a quasi-
logarithmic non-uniform scaling of the data. Figure 6 shows several eigenvalues
with small <λ—these are the macroscale waves which decay slowly through
‘bottom friction’ as they propagate.

The figure also shows many eigenvalues with large imaginary and real parts:
these represent microscale waves within the patches that decay rapidly through
microscale dissipation. Such rapid microscale waves, and their decay, is seen



4 Linear analysis of the coupled dynamics C166

ar
cs
in
h(
=
λ
)

5 4 3 2 1 0
5

4

3

2

1

0

1

2

3

4

5

arcsinh(<λ)

Figure 6: Distribution of the real and imaginary parts of the numerical
eigenvalues for equations (4) and (5) with m = 10 patches and n = 9

microscale grid points on each patch. The length scale ratio r = 1/6 and the
coefficients ν0 = 0.01 and ν2 = 0.03 . There are 44 complex conjugate pairs
of values, and another two real values 0 and −0.1.

in the initial transients shown in a supplementary movie.6

The gap in the growth rate <λ, shown in Figure 6 as the gap in arcsinh<λ
between 0 and−1, is interesting. This gap indicates that the set of macroscopic
waves form a slow subspace, <λ ≈ 0 , among the multiscale dynamics of
the waves on the coupled patches. We plan further research into nonlinear
wave-like systems to use this slow subspace to establish the existence of a slow

6http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/6137/1112

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1112
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/6137/1112
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Table 1: Numerical eigenvalues for the macroscale wave modes from Figure 6
for m = 10 and m = 14 patches; compare with exact eigenvalues from
equation (14) for the linear dynamics about the steady state.
`/D multiplicity λ, eqn (14) λ, m = 10 λ, m = 14
0 one −0.000,−0.010 0,−0.010 0,−0.010
±1 two −0.020± 0.998i −0.020± 0.998i −0.020± 0.999i
±2 two −0.065± 1.999i −0.056± 1.836i −0.063± 1.968i

manifold of the nonlinear macroscale wave dynamics (Carr, 1981; Roberts,
1988, e.g.).

Table 1 lists the macroscale numerical eigenvalues in Figure 6 and the exact
eigenvalues from equation (14) about the steady sate. The numerical eigen-
values are close to the exact eigenvalues. Table 1 shows the conservation
of fluid (eigenvalue zero) and the decay of bulk velocity due to bed friction
(eigenvalue −0.010) are correct to at least three decimal places. The longest
wave mode on the domain, `/D = ±1 , which in the absence of friction
would have frequency one, also has its eigenvalue correct to three decimal
places. Numerical tests show that when the number of patches increases, the
numerical eigenvalues become closer to the analytical eigenvalues, as shown in
Table 1. For example, for the wavenumber `/D = ±2 mode, upon increasing
the number of patches from m = 10 to m = 14 we find the eigenvalues λ
change from −0.056±1.836i to −0.063±1.968i , which are significantly more
accurate when compared to the exact eigenvalues −0.065± 1.999i .

5 Conclusion

We invoked a staggered grid to discretely model both the microscale and
macroscale simulators of wave-like dynamics. Classic polynomial interpolation
underlies the coupling of patches proposed in Section 3 to form a gap-tooth
scheme. The resultant numerical simulations indicated that this could be
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a useful scheme for wave-like dynamics: movies of such simulations are in
the supplementary files. Numerical simulations currently underway indicate
that the scheme also works for nonlinear wave-like dynamics. Section 4
reported algebraic analysis and numerical determination of eigenvalues that
both confirm the accuracy of the proposed gap-tooth scheme for wave-like
dynamics. In particular, Figure 6 shows the clear separation between the
dynamics of the macroscale waves of interest, and the microscale waves within
each patch. Future work will focus on the theoretical accuracy of nonlinear
wave simulation, in one or several dimensions, and their application to shallow
water flow. This kind of multiscale modelling should also be applicable to
modelling large scale turbulence floods and tsunamis (Roberts et al., 2008,
e.g.) by empowering us to use a microscale turbulence model in a macroscale
simulation.
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