
ANZIAM J. 42 (E) ppC586–C607, 2000 C586

A non-standard branch and bound method for
the Hamiltonian cycle problem

J.A. Filar∗ Jean B. Lasserre†

(Received 7 August 2000)

Abstract

In this note, we consider an embedding of a Hamiltonian cycle
problem in a Markov decision process (mdp). We propose a branch &
bound type method based on the frequency polytope resulting from
this embedding. Among the special features of the proposed scheme
are the properties that: (i) a three-way branching is the biggest that

∗University of South Australia, Adelaide, Australia.
mailto:jerzy.filar@unisa.edu.au

†LAAS-CNRS, Toulouse, France. mailto:lasserre@laas.fr
0See http://anziamj.austms.org.au/V42/CTAC99/Fila for this article and ancillary

services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:jerzy.filar@unisa.edu.au
mailto:lasserre@laas.fr
http://anziamj.austms.org.au/V42/CTAC99/Fila

Contents C587

can occur, (ii) no integer-valued variable is required, and (iii), the size
of the lps solved at the nodes of the branch & bound tree can only
decrease as one moves down the tree. We hope that this note will en-
courage researchers in combinatorial optimization to experiment with
the Markov decision process embedding as a basis for new algorithmic
procedures.

Contents

1 Introduction C588

2 MDP embedding C589

3 A Branch & Bound algorithm C592
3.1 Notation and preliminaries C592
3.2 The main idea . C596
3.3 A B & B procedure for a Hamiltonian cycle ending in node k C600

4 Example C602

References C606

1 Introduction C588

1 Introduction

The well-known Hamiltonian Cycle Problem (hcp in short) can be described
as follows:

HCP: In a directed graph, find a path that enters every node exactly once
before returning to the starting node, or determine that no such path exists.

The Hamiltonian cycle problem is considered to be a very difficult problem
to solve and it is well-known to be np-hard. However, there are good heuristic
algorithms for solving many instances of the Hamiltonian cycle problem,
most of which are based on combinatorial approaches. In this paper, we use
an unorthodox approach to the Hamiltonian cycle problem, first initiated
by Krass and Filar [4], and then developed in Chen and Filar [7]1. The
approach has been continued by Feinberg [2]. The Hamiltonian cycle problem
problem is first embedded in a controlled Markov chain and the induced
ergodic structure is then exploited. In this approach, the standard linear
program often used to solve the average-cost problem for Markov decision
processes plays a central role.

Using the same formulation, Andramonov et al. [1] proposed a mixed-
integer programming solution method. This yielded encouraging numerical

1Despite the fact that [7] appeared three years earlier, it was in fact a continuation of
the work started in Krass and Filar [4].

2 MDP embedding C589

results (e.g., problems with hundred nodes and three hundred arcs could be
solved in approximately two minutes with the help of cplex subroutines).
However, the mixed-integer programming of [1], did not exploit many (except
for the very basic) features of the stochastic embedding. The branch & bound
procedure proposed here makes use of the special properties of the solutions
of the standard linear programs for average-cost Markov decision processes.

2 MDP embedding

We consider the following problem: Given a directed graph G with N nodes,
find a simple cycle of N arcs that is a Hamiltonian cycle (hc in short), or
determine that none exists. For a good account of the classical approaches to
this problem, the interested reader is referred to the books of Papadimitriou
and Steiglitz [8] and Lenstra and Rinnooy Kan [6]

Consider a graph G with a set of N nodes E := {1, 2, . . . , N}, and let
A(i) be the set of arcs emanating from Node i ∈ E. Let A := ∪i∈EA(i).
Assume that ni := |A(i)| ≥ 1 for every i ∈ E. An arc a, emanating from
a Node i ∈ E, i.e. a ∈ A(i), is associated with a pair (i, a). Therefore, the
notation (i, a) ; j ∈ E simply means that the arc a links nodes i and j,
that is, an arc comes out from Node i and comes in at Node j.

Given some fixed scalar ε ∈ (0, 1), and using the arcs from the original
graph G, we construct the transition law of a controlled Markov chain as

2 MDP embedding C590

follows: Let

piaj(ε) :=




1 if i = 1 and (i, a); j
0 if i = 1 and (i, a) 6; j
1 if i > 1 and (i, a); j = 1
ε if i > 1, j = 1 and (i, a) 6; j
1 − ε if i > 1, (i, a); j > 1
0 if i > 1, j > 1 and (i, a) 6; j.

(1)

The number piaj(ε) is interpreted as an ε-perturbed probability of a transition
from Node i to Node j, if an arc a is selected (with (i, a) ; j). Note that
a selection of an arc at a node of the graph G constitutes a choice of an
action in a state of the Markov decision process in which the graph has been
embedded. Thus it will be convenient to use the same symbol a to denote
both such an arc and the index of the corresponding action; as has been done
above. Note also that if ε = 0, these probabilities are 0 or 1, according to
the most natural interpretation (see [3], [4] or [7] for more details).

We now consider the following linear system:∑
i∈E

∑
a∈A(i)

(δij − piaj(ε))xia = 0, j ∈ E, (2)

∑
i∈E

∑
a∈A(i)

xia = 1 (3)

∑
a∈A(1)

x1a = 1/dN(ε) (4)

xia ≥ 0, i ∈ E, a ∈ A(i), (5)

2 MDP embedding C591

where δij is the usual Kronecker symbol.

When associated with a linear objective criterion
∑

i,a c(i, a)x(i, a), the
linear system (2–3), (5) becomes the standard linear program used to find
the minimum average cost and to identify the corresponding ergodic class,
in an average-cost Markov decision process [9, e.g.]).

A stationary “deterministic policy” is a mapping f : E → A with f(i) ∈
A(i), i ∈ E. Under such a policy, whenever the “system” is in state i ∈ E,
one chooses the action a := f(i) ∈ A(i) and the system moves to a state
j ∈ E, with probability piaj(ε). The set of stationary deterministic policies is
denoted by C(D). Hence, for a deterministic policy f ∈ C(D), f(i) identifies
an arc (i, a) in the original graph G.

In [4], it was shown that when (2–5) is associated with the Hamiltonian
cycle problem problem, every feasible solution {xia} to the above linear sys-
tem identifies a Hamiltonian cycle if and only if for every i ∈ E, there exists
a single action ai ∈ A(i) such that xiai

> 0.

However, for constrained Markov decision processes, in general, an op-
timal solution to a linear program with (2–5) as constraints, may identify
a rather simple “randomized” policy. That is, there will be at most one
Node i, such that xia > 0 for two “actions” a1 and a2. Hence, in general,
it is not possible to obtain a Hamiltonian cycle by just one run of a lin-
ear program with (2–5) as constraints. Nonetheless, the two actions where
the randomization occurs might provide a useful clue as to where branching
should occur.

3 A Branch & Bound algorithm C592

Therefore, the methodology proposed below is a heuristic to find a Hamil-
tonian cycle, using a linear program (with (2–5) as constraints) to branch
and bound. It might be interesting to emphasize that unlike standard branch
& bound methods, the size of the lps that are solved at progressive nodes
of the branch & bound tree, decreases rather than increases, as one moves
down the tree.

3 A Branch & Bound algorithm

In this section, we propose a Branch & Bound algorithm based on the above
Markov decision process embedding. We first introduce the notation and
present the basic principles before describing the algorithm.

3.1 Notation and preliminaries

The underlying polytope that is of interest to us is the “long-run frequency
space” of the ε-perturbed Markov decision process associated with our graph

3 A Branch & Bound algorithm C593

G, via (1).

X :=


x |

∑
i∈E

∑
a∈A(i)

(δij − piaj(ε))xia = 0 , j ∈ E

∑
i∈E

∑
a∈A(i)

xia = 1 ,

xia ≥ 0, i ∈ E, a ∈ A(i)

}

Note that when ε = 0, the main set of constraints defining X reduce (see (1))
to the “conservation of flow” constraints:∑

a∈A(j)

xja =
∑
i∈E

∑
a∈A(i)

piaj(0)xia =
∑

(i,a);j

xia,

where the last summation is over all arcs incident on j; for each j ∈ E.

For any fixed ε ∈ (0, 1) define the following quantities:

• x̂i :=
∑

a∈A(i) xia, i ∈ E.

• γ(ε) := ε(1 − ε)−1.

• di(ε) := 1 +
∑i

k=2(1 − ε)k−2, i = 2, 3, . . . , N .

• H := {x | x̂1 = dN(ε)−1}.

3 A Branch & Bound algorithm C594

• Xc := X ∩ H .

Given a convex polyhedron Ω, let ext(Ω) be the set of its extreme points.

Of course, it should be noted that each deterministic policy f ∈ C(D)
identifies a subgraph Gf ⊂ G via the correspondence

f(i) = a ⇔ arc(i, a) ∈ Gf ; i ∈ E.

If Gf is a Hamiltonian cycle, we shall say that f is a Hamiltonian cycle as
well.

Prior facts: (see Kallenberg [5] or Puterman [9] for 1–3, Filar and Krass [4]
for 4, and Chen and Filar [7] or Filar and Vrieze [3] for 5–6).

1. If x∗ ∈ ext(X), then xia > 0 for at most one action a, for each i ∈ E.

2. If f ∈ C(D) then {(i, f(i))}, i ∈ E, identifies an extreme point x(f) ∈
ext(X), with x(f) = {xif(i)}.

3. If x∗ ∈ ext(Xc), then there exists at most one i ∈ E for which there
are two actions a 6= b s.t. x∗

ia, x
∗
ib > 0.

3 A Branch & Bound algorithm C595

4. Let f ∗ ∈ C(D) be a Hamiltonian cycle and let x∗ = x(f ∗). If i ∈ E is
the kth node on the cycle (when starting from Node 1), then

x̂∗
i =

∑
a∈A(i)

x∗
ia =

{
dN(ε)−1, if k = 1 or 2
(−ε)k−2dN(ε)−1 if k = 3, 4, . . . , N

(6)

5. The class of deterministic policies can be partitioned into a disjoint
union

C(D) = C1 ∪ C2 ∪ · · · ∪ CN ∪ B, (7)

such that if

f ∈ Ci then x̂1(f) = di(ε)
−1; i 6= 1,

f ∈ B then x̂1(f) = ε(1 + ε)−1.

Clearly, CN is the (possibly empty) class of Hamiltonian cycles.

6. For all ε ∈ (0, 1)

2−1 = d2(ε)
−1 > d3(ε)

−1 > · · · > dN(ε)−1 > ε(1 + ε)−1. (8)

Thus (8) can be used to differentiate between the deterministic policies
belonging to different elements of the partition (7).

3 A Branch & Bound algorithm C596

3.2 The main idea

Property 3 in Section 3.1 suggests a natural “3-way branching” that will be
developed next and property 6 suggests a bounding scheme for fathoming
nodes in a branch & bound tree.

The search for a Hamiltonian cycle will be based on a search for a Hamil-
tonian cycle ending in a Node k, which means that k is the last node on the
Hamiltonian cycle before return to Node 1. If this search proves unsuccessful,
it can be repeated with another candidate for the last node on a Hamiltonian
cycle. Clearly, at most (N − 1) such searches need to be carried out.

Notation: Let G be a graph and Γ(ε) be the corresponding perturbed
Markov decision process with the transition law given by (1). Assume that
Node k has at least one arc of the form (k, 1), i.e., one may reach Node 1
from Node k. Let

Nk := {conclusion: 6 ∃ a hc ending in node k in the current graph}
Yk := {conclusion: ∃ a hc ending in node k in the current graph}.

Let r = 0, 1, 2, . . . denote the current branch of the branch and bound search
tree and Gr be the corresponding subgraph of G (with Γr(ε) being the cor-
responding perturbed Markov decision process, and Xr the corresponding
frequency space). Let (i, a) and (i, b) be a pair of arcs from Node i ∈ Gr.
Construct three subgraphs of Gr as follows:

3 A Branch & Bound algorithm C597

• Gr
ia := same as Gr except that all arcs coming out of i have been

replaced by the single arc (i, a).

• Gr
ib := same as Gr except that all arcs coming out of i have been

replaced by the single arc (i, b).

• Gr
i−ab := same as Gr except that both arcs (i, a) and (i, b) have been

deleted

Branching. Let “3-way branch on the ith node of Gr” mean that we shall
now consider

Gr+1 := Gr
ia; Gr+2 := Gr

ib; Gr+3 := Gr
i−ab,

and with the convention G0 := G.

Note that every time we go to the branch corresponding to either Gr
ia or

Gr
ib, we are fixing one particular arc in the graph. This arc would remain

fixed for all subsequent nodes along that branch of the branch and bound
tree. Therefore, before solving an lp at that branch and bound node, one
should first check if the fixed arcs up to this point contain a cycle. If so, and
if such a cycle is not a Hamiltonian cycle, then this branch and bound node
should be fathomed. We call this a subcycle check.

Bounding: Consider whether a fixed node, say Node k ∈ E, can be the
last node on a Hamiltonian cycle that returns to Node 1 [of course, for this

3 A Branch & Bound algorithm C598

to happen, there must exist an arc of the form (k, 1)]. However, if k were the
last node on a Hamiltonian cycle, then by (6)

x̂∗
k =

∑
a∈A(k)

xka(f
∗) = (1 − ε)N−2dN(ε)−1. (9)

Choose ε ∈ (0, 1) such that

L := (1 − ε)N−2dN(ε)−1 < ε(1 + ε)−1. (10)

Then:

1. L will be a lower bound to determine the fathoming in the search tree
of the branch and bound procedure. Note that by (9) if k were the last
node on a Hamiltonian cycle corresponding to f ∗, then xk(f

∗) = L.

2. Because the perturbed mdp with transition law given by (1) is “unichain”,
the deterministic policies correspond to the extreme points of X. To be
more precise, to every stationary policy f with stationary distribution
ν, corresponds an extreme point that identifies its stationary distribu-
tion (i.e.

∑
a x(i, a) = ν(i), for the recurrent states i.) Therefore, we

can now further partition C(D) (and therefore, ext(X)) with respect
to Node k, as follows:

C(D) =

[(⋃
i

Ck
i

) ∪ Bk

]
∪

[(⋃
i

C
k

i

) ∪ B
k

]
= Uk ∪ V k,

3 A Branch & Bound algorithm C599

where

f ∈ Uk ⇔ x̂k(f) =
∑

a∈A(k)

xka(f) ≤ L

f ∈ V k ⇔ x̂k(f) =
∑

a∈A(k)

xka(f) > L.

3. Note that by (9), all the Hamiltonian cycles (if any) ending in Node k
must lie in Uk. In fact, if f ∈ Uk, then either

(A) 0 < x̂k(f) ≤ L, (11)

or

(B) x̂k(f) = 0 and k is transient in the Markov Chain induced by f.
(12)

Note that whenever a node of the branch and bound tree will be fath-
omed by an appropriate lp having an objective function value greater
than L, this will, typically, eliminate a large portion of C(D) from fur-
ther consideration, namely, all the f ∈ V k that were still among the
extreme points of the current lp.

3 A Branch & Bound algorithm C600

3.3 A B & B procedure for a Hamiltonian cycle ending
in node k

The method begins with the original graph G being the “root” node, G0, of
the branch and bound tree. Associated with it, are the long-run frequency
space X0 := X, the cut-space X0

c = X0 ∩ H (see Section 3.1) and a linear
program

lp0 : z0 := {min x̂k | x ∈ X0
c }.

Of course, if z0 = L and x0 (the optimal solution to lp0) is a Hamiltonian
cycle ending in k (identified by the positive elements x0

ia > 0 of x0), then the
search is over. In general, however, the following branch-and-bound recursive
procedure will be required.

B & B algorithm

Step 1 (Testing and Bounding): At the current iteration, r, we are con-
sidering a node of the branch and bound tree corresponding to a sub-
graph Gr of G and an associated linear program

lpr : zr := {min x̂k | x ∈ Xr
c },

where Xr is the long-run frequency space corresponding to Gr and
Xr

c = Xr ∩ H . Apply the following fathoming tests:

3 A Branch & Bound algorithm C601

1. If Gr has been obtained from a previous branch and bound node
by fixing an arc (i, a), then

(a) if (i, a); 1 and i 6= k, then Nk and fathom Gr;

(b) if (i, a); k and i = 1, then Nk and fathom Gr;

(c) if the fixed arcs of Gr form a cycle of length less than N , then
Nk and fathom Gr.

2. If lpr is infeasible, then Nk and fathom Gr.

3. If zr > L, then Nk and fathom Gr.

4. If zr < L compute

z̄r := {max x̂k | x ∈ Xr
c },

and if z̄r < L, then Nk and fathom Gr.

5. If 0 ≤ zr ≤ L and xr (the optimal basic solution of lpr) is not a
Hamiltonian cycle, then there exist i ∈ E and arcs (i, a) and (i, b)
in Gr, such that xia, xib > 0. Go to Step 2.

6. If zr = L and xr is a Hamiltonian cycle, then Yk.

Step 2 (3-way branch): Suppose that condition (v) is met at the current
subgraph Gr and associated lpr. Do a 3-way branch on Node i, to
obtain Gr+1, Gr+2, Gr+3 and the corresponding lp’s, lpr+1, lpr+2 and
lpr+3. Return to Step 1 with each Gr+1, Gr+2 and Gr+3.

4 Example C602

Remarks:

1. Note that since each one of Gr+1, Gr+2 and Gr+3 has at least one arc
less than Gr, the above process must terminate finitely; either when all
the nodes have been fathomed, or when a Hamiltonian cycle ending in
Node k has been found. Furthermore, the dimensions of lpr+s are less
than those of lpr, for each s = 1, 2, 3.

2. At this stage, we do not recommend any particular order of searching
through the unfathomed nodes of the branch and bound tree.

4 Example

In this section, we illustrate the preceding branch and bound algorithm on
a single example. In particular, we consider a complete graph G on N = 5
nodes with no self-loops. The value of the perturbation parameter was set
at ε = 0.5. This immediately implies that d5(ε)

−1 = 0.347826, L = (1 −
ε)3d5(ε)

−1 = 0.043478 and the inequality (10) is satisfied.

For the purpose of demonstrating the branch and bound algorithm, we
shall pretend that we do not know that there are Hamiltonian cycles ending
in Node k = 3 in G and set our algorithm the task of finding one. Thus, the

4 Example C603

root graph G0 = G and lp0 is a linear program of the form

lp0




min cT x
Ax = b
x ≥ 0,

where A is a 7 × 20 matrix, cT is a 1 × 20 vector and b is a 7 × 1 vector.
In particular, (2–5) imply that cT = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0),
bT = (0, 0, 0, 0, 0, 1, 0.347826) and A =

2
666666666666666666666666664

1 1 1 1

.

.

. −1 − 1
2 − 1

2 − 1
2

.

.

. −1 − 1
2 − 1

2 − 1
2

.

.

. −1 − 1
2 − 1

2 − 1
2

.

.

. −1 − 1
2 − 1

2 − 1
2

−1 0 0 0

.

.

. 1 1 1 1

.

.

. 0 − 1
2 0 0

.

.

. 0 − 1
2 0 0

.

.

. 0 − 1
2 0 0

0 −1 0 0

.

.

. 0 − 1
2 0 0

.

.

. 1 1 1 1

.

.

. 0 0 − 1
2 0

.

.

. 0 0 − 1
2 0

0 0 −1 0

.

.

. 0 0 − 1
2 0

.

.

. 0 0 − 1
2 0

.

.

. 1 1 1 1

.

.

. 0 0 0 − 1
2

0 0 0 −1

.

.

. 0 0 0 − 1
2

.

.

. 0 0 0 − 1
2

.

.

. 0 0 0 − 1
2

.

.

. 1 1 1 1

1 1 1 1

.

.

. 1 1 1 1

.

.

. 1 1 1 1

.

.

. 1 1 1 1

.

.

. 1 1 1 1

1 1 1 1

.

.

. 0 0 0 0

.

.

. 0 0 0 0

.

.

. 0 0 0 0

.

.

. 0 0 0 0

3
777777777777777777777777775

An optimal solution of lp0 yields z0 = 0 and x0 which has positive entries
corresponding to arcs (4, 1) and (4, 2). Thus, Step 2 of the algorithm leads
to three branch and bound nodes corresponding to subgraphs

G1 = G0
(41), G2 = G0

(42), G3 = G0
(4−12).

Now, G1 can be fathomed immediately in view of the test 1a of Step 1. We
then set up the linear program lp2 corresponding to G2. Note that this is

4 Example C604

easily done by deleting three columns (and corresponding variables) from A
and cT .

An optimal solution of lp2 yields z2 = 0 and x2 which has positive entries
corresponding to arcs (2, 1) and (2, 4). This yields to three more branch and
bound nodes corresponding to the subgraphs

G4 = G2
(21), G5 = G2

(24), G6 = G2
(2−14).

Now, G4 can be fathomed by the test 1a of Step 1 and G5 can be fathomed
by the test 1c of Step 1.

At this stage, we still have two unfathomed nodes (G3 and G6) of the
branch and bound tree.

We choose to set up and solve lp6 corresponding to Node G6 of the tree2.
This is done by deleting the columns (and variables) corresponding to the
arcs (2, 1) and (2, 4) in the preceding linear program lp2.

This yields z6 = 0 and x6 which has positive entries corresponding to arcs
(5, 1) and (5, 4). Step 2 now yields branch and bound nodes

G7 = G6
(51), G8 = G6

(54), G9 = G6
(5−14).

Node G7 is fathomed by the test 1a of Step 1, and lp8 is formed and solved
next.

2This corresponds to a move down a branch rather than a jump to another branch. We
do not claim that this is the best strategy

4 Example C605

This yields z8 = L and x8 which has positive entries corresponding to
arcs (1, 3) and (1, 5). Step 2 now yields nodes

G10 = G8
(13), G11 = G8

(15), G12 = G8
(1−35).

Node G10 is fathomed by the test 1b of Step 1 and lp11 is formed and
solved. This yields z11 = L and x11 which identifies only one arc per node
and forms the Hamiltonian cycle

1 → 5 → 4 → 2 → 3 → 1.

Hence, in order to find this Hamiltonian cycle, we needed to generate 12
nodes of the branch and bound tree and solve 5 linear programs. Considering
that there are 45 = 1024 subgraphs in G that correspond to deterministic
policies f ∈ C(D) which (as far as the algorithm is concerned) are all possible
candidates for a Hamiltonian cycle ending in Node 3, and that among these
candidates, there are only 4! = 24 Hamiltonian cycles of any kind, this might
be regarded an efficient run.

Of course, the efficiency of this algorithm needs to be tested on a signifi-
cant sample of problems, but this is beyond the scope of this note that was
intended merely to stimulate interest in such a numerical experimentation.

Acknowledgements: This research began during a visit at laas while the
first author was an invited professor at Paul Sabatier University in Toulouse,
and continued in Adelaide, while the second author visited University of
South Australia and was supported by the arc grant #A49906132.

References C606

References

[1] M. Andramonov, J.A. Filar, P. Pardalos, and A. Rubinov.
Hamiltonian Cycle Problem via Markov Chains and Min-type
Approaches. In: P.M. Pardalos, editor, Approximation and Complexity
in Numerical Optimization: Continuous and Discrete Problems,
Kluwer Academic Publishers, pp. 31–47, 2000. C588, C589

[2] E. Feinberg. Constrained Discounted Markov Decision Processes and
Hamiltonian Cycles, Math. Oper. Res., 25:130–144, 2000. C588

[3] J.A. Filar and K. Vrieze. Competitive Markov Decision Processes.
Springer-Verlag, New York, 1996. C590, C594

[4] J. Filar and D. Krass. Hamiltonian cycles and Markov chains. Math.
Oper. Res., 19:223–237, 1995. C588, C588, C590, C591, C594

[5] L.M.C. Kallenberg. Linear Programming and Finite Markov Control
Problems. C.W.I., Amsterdam, 1983. C594

[6] E. Lawler. J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The
Traveling Salesman Problem. A Guided Tour of Combinatorial
Optimization. Wiley, Chichester, 1985. C589

[7] M. Chen and J. Filar. Hamiltonian cycles, quadratic programming and
ranking of extreme points. in C. Fouldas and P. Pardalos, editors,

References C607

Global Optimization, Princeton University Press, 1992. C588, C588,
C590, C594

[8] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice Hall, New Jersey, 1982. C589

[9] M.L. Puterman. Markov Decision Processes. Wiley, New York, 1994.
C591, C594

	Introduction
	MDP embedding
	A Branch & Bound algorithm
	Notation and preliminaries
	The main idea
	A B & B procedure for a Hamiltonian cycle ending in node k

	Example
	References

