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Chaos, potential predictability and model
validation of climate variations
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Abstract

In this paper, we review recent computational techniques which
make it possible to separate interannual climate variability of seasonal
means into chaotic and potentially predictable components. Based on
analysis of variance and frequency analysis of daily time series, the
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techniques are applicable to both observed data sets and ensembles of
multidecadal simulations using atmospheric general circulation mod-
els forced by observed sea surface temperatures and different initial
conditions. A new technique for validating the interannual variability
in ensembles of model simulations is also outlined. The methodolo-
gies have been applied to a study of the interannual variability of the
global 200 hPa geopotential height field.
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1 Introduction

Theoretically, dynamically extended seasonal forecasts, beyond the limit of
predictability of individual synoptic weather systems (typically 10–15 days),
are possible because atmospheric boundary forcings, such as, for example,
sea surface temperature (sst) and vegetation cover, which evolve on slower
time scales than that of the synoptic systems, largely determine the averaged
weather features on a seasonal (1–3 month averages) time scale. However,
even on this time scale and for seasonal averages, the climate system is still
inherently chaotic [8] and it is of interest to determine how much of the
climate variability, at different geographical locations, is in fact predictable.

A number of studies have considered the question of potential long-range
predictability of climate variability. These have involved ensembles of mul-
tidecadal simulations using atmospheric general simulation models (agcms)
with observed (ssts) and different initial conditions [7, 8, e.g.]. With such
an approach, it has been possible to separate interannual variability into
chaotic components (due to the sensitivity to initial conditions) and a po-
tentially predictable, or forced, component (based on the ensemble average).
Thus, it is possible to identify areas where different climate variables are
potentially predictable.

Recently, a new technique [8] for separating the interannual variance of
modelled climate variables into a forced component, a low frequency internal
source component and a weather noise component has been proposed. Similar
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techniques have been applied to observations [4, e.g.] but in this case it is not
possible to separate directly the forced and the low frequency components.
Thus, for observations, potential predictability has generally been defined in
terms of the variability of this combined component.

How well models reproduce the interannual variability of the components
of seasonal means is also a topic of great interest. Ideally, in assessing, or vali-
dating, a model’s simulation of climate variability, the emphasis should be on
the extent to which the forced component of variation is correctly simulated
since this is potentially predictable. Zheng and Frederiksen [8] proposed an
estimation procedure for the correlation between the forced components of
simulated and observed seasonal means. Here, we review these techniques in
some detail, and apply them to the modelled and observed global 200 hPa
geopotential height field.

The plan of this paper is as follows. In Section 2, we discuss the method-
ology, the observed and model data sets are described in Section 3, and
the results are presented in Section 4. Our conclusions are summarised in
Section 5.

2 Methodology: Analysis of variance
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2.1 Model

Given an ensemble of S agcm simulations, it is possible to separate the vari-
ance of a climate variable into chaotic and potentially predictable components
if we assume that a daily anomaly from an ensemble of agcm simulations is
represented by a simple linear statistical model as

xsyt = µ + βy + δsy + εsyt. (1)

Here, s = 1, . . . , S is the simulation number; y = 1, . . . , Y is the year;
and t = 1, . . . , T is the day in a season of length T days; µ represents
an overall mean taken over all s, y and t; βy is the deviation from µ due
to external forcings such as, for example sst-forcing, which may change
from year to year; δsy is the low frequency component (interannual, decadal
etc. ) in simulation s due to internal sources and is assumed to be purely
random and independent from one simulation to another; εsyt represents
daily weather noise. The {εsyt, t = 1, . . . , T} are assumed to represent a
stationary normal stochastic process with mean zero and are independent
and identically distributed with respect to s and y.

As in [8] and [9], it is convenient to introduce the convention of using a
“circle” as a subscript whenever an average is done over that index. Thus,
for example, from Equation (1) a seasonal mean anomaly derived from daily
values is written as

xsyo = µ + βy + δsy + εsyo. (2)
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Also, the symbol V̂ will be used to denote the estimated variance of a variable
or the estimated covariance of two variables. The aim is then to separate the
variance of the climate seasonal mean anomaly into its constituent parts,

V̂ (xsyo) = V̂ (βy) + V̂ (δsy) + V̂ (εsyo). (3)

Following [7], the following estimates are possible. The variance of the sea-
sonal mean anomaly averaged over all simulations is simply,

V̂ (xoyo) =
1

Y − 1

Y∑
y=1

(xoyo − xooo)
2. (4)

An estimate of the variance of the combined weather noise and low frequency
internal components can be derived by looking at the spread among the
ensemble members. Thus,

V̂ (δsy + εsyo) =
1

Y (S − 1)

Y∑
y=1

S∑
s=1

(xsyo − xoyo)
2. (5)

Hence, assuming a normality condition on the internal components,

V̂ (δoy + εoyo) = V̂ (δsy + εsyo)/S. (6)

The variability of the forced component V̂ (βy) can then be estimated by using
either the condition of [7], (which assumes that the forced components {βy}
are statistically independent of each other and the internal components), or
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the method of [8] (which uses Kolmogorov’s strong law of large numbers).
Either way it follows that,

V̂ (βy) = V̂ (xoyo) − V̂ (δoy + εoyo) (7)

from which it follows further that the variability of the seasonal mean can
be written as,

V̂ (xsyo) = V̂ (βy) + V̂ (δsy + εsyo). (8)

The variance of the weather component of the seasonal mean can be
estimated using the approach of [9], where the seasonal average of the daily
values is thought of as one observation in a time series obtained by applying
a T -day running mean filter to the original time series {εsyt} . The variance
of this new time series is given by the integral of its spectral density function,
which can be approximated by its periodogram. Thus, it follows that,

V̂ (εsyo) =
1

SY T 2

S∑
s=1

Y∑
y=1

∣∣∣∣∣
T∑

t=1

xsyte
it2π/T

∣∣∣∣∣
2

. (9)

The use of {xsyt} in Equation (9) is possible because {βy} and {δsy} do
not involve daily values and hence their contribution to the sum over t is
identically zero. Thus, {εsyt} and {xsyt} are interchangeable in Equation (9).
Again, assuming normality, it follows that,

V̂ (εoyo) = V̂ (εsyo)/S, (10)
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and the independence of the weather and low frequency components assures
that,

V̂ (δoy) = V̂ (δoy + εoyo) − V̂ (εoyo). (11)

Hence, it follows that,

V̂ (δsy) = V̂ (δoy) × S. (12)

Using Equations (7–9), it follows further that the combined variance of the
external forced and low frequency components can be expressed as,

V̂ (βy + δsy) = V̂ (βy) + V̂ (δsy) = V̂ (xoyo) − V̂ (εoyo). (13)

Thus, the variance due to each of the three components, the total chaotic
component, and the combined contribution from the external forcing and low
frequency components can be estimated explicitly for the model.

2.2 Observations

For the observations similar formulas apply, except that it is not possible to
separate forced and low frequency internal components as in Equation (13).
If we represent daily observed anomalies by

x′
yt = µ′ + β ′

y + δ′y + ε′yt. (14)
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then the following formulas apply for the observations,

V̂ (x′
yo) =

1

Y − 1

Y∑
y=1

(x′
yo − x′

oo)
2, (15)

V̂ (ε′yo) =
1

Y T 2

Y∑
y=1

∣∣∣∣∣
T∑

t=1

x′
yte

it2π/T

∣∣∣∣∣
2

, (16)

V̂ (β ′
y + δ′y) = V̂ (x′

yo) − V̂ (ε′yo). (17)

Thus, the observed interannual variance can be decomposed into,

V̂ (x′
yo) = V̂ (β ′

y + δ′y) + V̂ (ε′yo). (18)

If one has access to a “good” model, then the first term on the right hand
side can be further decomposed if one assumes (ad hoc) that,

V̂ (β ′
y)

V̂ (β ′
y + δ′y)

=
V̂ (βy)

V̂ (βy + δsy)
. (19)

2.3 Correlation and Model Validation

In most modelling studies involving an ensemble of runs, the correlation be-
tween simulated ensemble seasonal means and observed seasonal means is
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often used as an index of agcm skill in simulating the sst-forced variability.
This measure, in fact, represents the forecast (simulation) skill for an ensem-
ble of finite size (or simulation number) given a perfect sst forecast. Low
correlation could be due to the strongly chaotic nature of the climate system.
Thus, in this context, it is not an optimal index of agcm skill. The corre-
lation between the forced component of simulated seasonal means and the
observed seasonal means represents the forecast skill for infinite simulations,
because the ensemble mean of simulated seasonal means converges towards
the simulated forced component as the simulation number increases. The dif-
ference between the two correlation coefficients discussed here is a measure
of the possible improvement of the real-world forecast skill by adding more
simulations. A fairer test of the model would be to determine the extent to
which the forced component of variability is correctly simulated.

Zheng and Frederiksen [8] show that the boundary forcing is the only pos-
sible source of the covariability between the simulated and observed seasonal
mean climate variables. Thus it follows from the independence of the low
frequency , weather noise and forced components, and using Kolmogorov’s
strong law of large numbers, that,

V̂ (xoyo, x
′
yo) ≈ V̂ (βy, x

′
yo) ≈ V̂ (βy, β

′
y + δ′y) ≈ V̂ (βy, β

′
y) (20)

where,

V̂ (xoyo, x
′
yo) =

1

Y − 1

Y∑
y=1

(xoyo − xooo)(x
′
yo − x′

oo). (21)
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Hence, using the results of the two previous sections, it is easy to derive the
following correlation estimates,

Ĉ(xoyo, x
′
yo) = V̂ (xoyo, x

′
yo)/

[
V̂ (xoyo)V̂ (x′

yo)
] 1

2
, (22)

Ĉ(βy, x
′
yo) = V̂ (βy, x

′
yo)/

[
V̂ (βy)V̂ (x′

yo)
] 1

2
, (23)

Ĉ(βy, β
′
y + δ′y) = V̂ (βy, β

′
y + δ′y)/

[
V̂ (βy)V̂ (β ′

y + δ′y)
] 1

2
, (24)

Ĉ(βy, β
′
y) = V̂ (βy, β

′
y)/

[
V̂ (βy)V̂ (β ′

y)
] 1

2
. (25)

The last equation is only possible if we assume Equation (19) is valid.

As mentioned above, a model’s skill at reproducing observed climate vari-
ability has traditionally been measured by the correlation Ĉ(xoyo, x

′
yo). Ide-

ally, a better measure is Ĉ(βy, β
′
y), but it can only be determined if we assume

Equation (19). However, it is possible to put a lower bound on Ĉ(βy, β
′
y),

since it follows from Equations (22–24) that, for positive Ĉ(xoyo, x
′
yo),

Ĉ(xoyo, x
′
yo) ≤ Ĉ(βy, x

′
yo) ≤ Ĉ(βy, β

′
y + δ′y) ≤ Ĉ(βy, β

′
y). (26)
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3 Data

The simulated data used in this study are the daily 200 hPa geopotential
heights from an ensemble of 4 runs of the Bureau of Meteorology Research
Centre (bmrc) agcm for the period March 1950–February 1990. The model
has a horizontal truncation at rhomboidal wavenumber 31 (2.5◦ lat. ,3.75◦

lon. grid) and has 9 vertical sigma levels. The model dynamics and physical
parametrizations are detailed in [2] and [5] and references therein. The runs
were forced by observed global sea surface temperature and sea ice taken
form the Global Ice Sea Surface Temperature (gisst) dataset [6]. The carbon
dioxide concentrations was fixed at 345 ppmv. Thus the effects of increasing
carbon dioxide, and aerosol concentrations, have not been modelled. To
ensure a smooth and balanced start, the initial atmospheric conditions were
taken from a ten year amip (1979–1988) and a thirteen year (1950–1962)
simulation of the model. Specifically, initial conditions were taken at 11Z on
1 and 2 December 1987, and 3 and 4 December 1962. The set of experiments
performed is described more fully in [1].

We have taken as our “proxy” observed data the daily 200 hPa geopo-
tential height field from the National Centre for Environmental Prediction
(ncep) and National Centre for Atmospheric Research (ncar) reanalyses [3],
over the period 1958 through 1998. This data has been linearly interpolated
onto the model grid. The analysis has been applied to both the modelled and
the observed data for the common period 1958–1991 and to the September-
October-November (son) seasonal mean.
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4 Results

As an example of the useful of the techniques discussed in Section 2, we have
applied them to the 200 hPa geopotential height field for son, using daily
data from agcm simulations and the ncep/ncar reanalysis for the period
1958–1991. The model, as is the case with many agcms, underestimates
the total inter-annual variance of the height field in all seasons, especially
in the middle to high latitudes (not shown). However, the spatial patterns
of variation are similar and the fractions of the model variance explained by
the weather noise component and the combined low frequency and forced
components are similar to the observed. This can be seen from Figures 1
and 2 which show the contribution from each component expressed as a
fraction of the total variance.

Figures 1 and 2 show that the weather noise and low frequency internal
components have the greatest contribution in the extratropics of both hemi-
spheres, and have only a minimal contribution in the tropics and subtropics.
In contrast, this latter region is largely dominated by external forcing. The
model weather noise component is similar to the observed, except that the
main contribution in the Southern Hemisphere is displaced more equator-
ward. Similarly, the model seems to underestimate the influence of external
forcing and low frequency dynamics in some extratropical regions, notably
over North America and Greenland and in the southern parts of the Pacific
and Indian Ocean.
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Figure 1: Components of variance of the observed 200 hPa height expressed
as a fraction of the total variance.
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Figure 2: As in Figure 1 but for the model.
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Figure 3 shows the four possible correlation maps between model and
observed. When the correlation between the total fields is negative in some
geographical regions, these areas are left blank in the other correlation plots
We can see that the correlation between model and observed increases as the
chaotic components are successively removed. This is particularly true for
the mid-latitudes. Also the difference between the correlation between the
total fields and the correlation between the model forced and observed total
field is not that much. This suggests that little extra skill would be obtained
by taking a larger ensemble size during son. This is not true in all seasons.
For example, during December-January-February (not shown) much bigger
differences are found suggesting a larger ensemble size would help.

5 Conclusions

We have discussed a number of techniques for separating the inter-annual
variance of climate variables into a weather noise, low frequency internal
and forced components. The latter represents the potentially predictable
component. An estimation procedure for the correlation between the forced
components of the simulated and observed seasonal means has also been
proposed. This is a fairer measure of model skill than that currently used,
that is, the correlation between the total fields.

The techniques have been applied to the 200 hPa geopotential height
field from an ensemble of agcm simulations and compared with the ob-
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Figure 3: Correlations between modelled and observed components of vari-
ation.
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served (ncep reanalysis). During son, we found that the weather noise and
low frequency internal components largely dominated the extratropics of the
Northern Hemisphere and much of the Southern Hemisphere. Conversely,
in the tropics/subtropics the external forcing largely dominated. Applying
the correlation analysis, we found that, as expected, the correlation between
model and observed increases as we progressively remove the chaotic compo-
nents of variation. This was particularly true for the mid-latitudes. Largest
correlations tended to occur in the 30S–30N latitude band where the model
showed large potential predictability. This technique also allows us to see
the impact of increasing the size of the ensemble size of simulations. We
found for son that little extra would be gained by increasing the ensemble
size from the four we used.
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