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Abstract

Variants of the multi-objective particle swarm optimisation (mopso)
algorithm are investigated, mainly focusing on swarm topology, to
optimise the well-known 2D airfoil design problem. The topologies used
are global best, local best, wheel, and von Neumann. The results are
compared to the non-dominated sorting genetic algorithm (nsga-ii) and
multi-objective tabu search (mots) algorithm, and it is found that the
attainment surfaces achieved by some of the mopso variants completely
dominate those of nsga-ii. In general, the mopso algorithms also
significantly improve diversity of solutions compared to mots. The
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mopso algorithm proves its ability to exploit promising solutions in
the presence of a large number of infeasible solutions, making it well
suited to problems of this nature.
Subject class: 68
Keywords: Multi-objective particle swarm optimization; MOPSO; 2D
airfoil design
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1 Introduction

There is increasing use of heuristic optimisation algorithms for real world
problems, such as the 2D airfoil design. In the past, solutions of this problem
were undertaken by a priori aggregation of objectives, such as lift and drag
coefficients, into a single objective, the lift/drag ratio [1]. Maintaining the
multi-objective formulation of the problem allows the exploration of the
behaviour of the airfoil across a range of design parameters and operating
conditions, but requires the use of more complex metaheuristics and a need
to address conflicting objectives.
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Particle swarm optimisation (pso) [2] is readily applicable to many problems
due to its simplicity and effectiveness. Inspired by the social behaviour of
various species, it uses a number of particles (candidate solutions) moving
around the search space to find the best solution. Particles are guided by
their own best found solutions, as well as the best solution the swarm has
obtained so far.

Different variants of the pso algorithm focusing on the swarm topology have
been developed. Some topologies are global best [2, 3], local best [3], wheel [4],
and von Neumann [4]. In this article the 2D airfoil design problem is used to
investigate the capabilities of these different variants of the multi-objective
pso (mopso) algorithm. A comparative study with the non-dominated sorting
genetic algorithm (nsga-ii) [5] and multi-objective tabu search (mots) [6] is
also conducted in order to verify the results.

Section 2 presents a brief introduction to mopso. Section 3 discusses the
basic principles of the 2D airfoil design problem. The experimental results
are demonstrated in Section 4. Finally, Section 5 concludes the work and
suggests some directions for future research.

2 Multi-objective particle swarm optimisation

The multi-objective version of pso was first proposed by Coello [7]. Following
the same concepts of pso, mopso employs a number of particles which move
around the search space to find the best solution. Meanwhile, they all trace
the best location (best solution) in their paths. In other words, particles
consider their own non-dominated best solutions (pbest) as well as one of the
non-dominated solutions the swarm has obtained so far (gbest) for updating
position. The mathematical model is [8]

vi(t+ 1) = wvi(t) + c1 rand(pbesti −xi(t)) + c2 rand(gbest−xi(t)) , (1)
xi(t+ 1) = xi(t) + vi(t+ 1) , (2)
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where vi(t) is the velocity of particle i at iteration t, w is the inertial weight,
c1 is the cognitive coefficient, c2 is the social coefficient, rand is a random
number in [0, 1] , xi(t) is the position of particle i at iteration t, pbesti is the
best non-dominated solution that the ith particle has found so far, and gbest
indicates one of the non-dominated solutions the swarm has obtained so
far. The first term of (1) provides stability for pso. The second and third
terms contribute to the algorithm’s exploitation of known good solutions.
An external archive is generally used for storing and retrieving the obtained
Pareto optimal solutions.

This article explores the suitability of various algorithms when applied to a
problem with competing objectives (design of an airfoil to maximise lift and
minimise drag). Furthermore, the problem chosen proves to be particularly
challenging due to the sparsity of feasible solutions. To address this issue a
number of features were incorporated in the algorithm.

A mutation operation called turbulence is embedded in mopso to increase
randomness and promote diversity of trial solutions. The proposed external
archive was designed to save the non-dominated solutions obtained so far.
It has two main components: an archive controller and a grid. The archive
controller is responsible for deciding if a solution should be added to the
archive or not. The grid is responsible for keeping the archive solutions as
diverse as possible.

The mopso algorithm handles constraints whenever two solutions are being
compared. In comparing two feasible solutions the non-dominance comparison
is applied directly. In comparing feasible and infeasible solutions the feasible
solution is selected. Among two infeasible solutions the solution with less
constraint violation is chosen.

The mopso algorithm starts by randomly placing the particles in a problem
space. Over the course of iterations, the velocities of particles are calculated
using (1). After defining the velocities, the position of particles is calculated
by (2). All non-dominated solutions are added to the archive. Finally, the
search process is terminated by satisfying a stopping criterion.
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Figure 1: Different topologies for mopso.

The original version of mopso used the global (mopsog) topology illustrated
in Figure 1(a). A topology dictates how particles share information. Some
other topologies are: local (mopsol), Figure 1(b); wheel (mopsow), Fig-
ure 1(c); and von Neumann (mopsov), Figure 1(d). In the following sections
the mopso algorithm is equipped with each of these topologies in turn and
employed for optimising the shape of a 2D airfoil.

3 2D airfoil design problem

The 2D airfoil design problem is essentially one of optimising the shape of
the airfoil to maximise lift and minimise drag. As visualised in Figure 2, the
engines provide thrust for moving the aircraft forward, and thrust is converted
to lift by the wings. However, air flow around the wing brings drag against
the thrust, the magnitude being influenced by the shape of the airfoil. The
objective functions (lift and drag coefficients) are F(CL) = −CL/CL,datum and
F(CD) = CD/CD,datum where ‘datum’ is used for a naca0012 airfoil section [9].
The naca0012 airfoil is symmetrical. The 00 indicates that it has no camber
and the 12 indicates that the airfoil has a thickness to chord length ratio
of 12 (it is 12% as thick as it is long).

The freeware XFoil [10] was used for calculating the objective functions



3 2D airfoil design problem C350

 

Angle of 
attack 

Centre of pressure 
Weight 

 
  

 

 

Lift 

Drag 

Thrust 

Figure 2: Lift and drag.

FixedFixed

FixedFixed

 
L1 L3

L4L2

Figure 3: Schematic of 2D airfoil and ffd structure.

(lift and drag). As illustrated in Figure 3, the free form deformation (ffd)
parametrisation method [11] is utilised for defining the shape of the airfoil
using four control points. In this method the control points define the final
shape of an airfoil curvature. In our case, the control points are allowed to
move in the X and Y dimensions. Leading and trailing edges of the airfoil are
fixed.
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This problem is formulated as:
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;

minimise F(CD) =
CD
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;

subject to thickness, leading curvature ;
parameter range −1 6 P1,P2,P3,P4,P5,P6,P7,P8 6 1 .

(3)

This problem has eight variables, each within the range [−1, 1] . There are
two main constraints related to the thickness and leading curvature. The first
constraint is to keep the required space for internal wing components. The
second constraint is to minimise problems with flow separation and increase
stability of performance at operating extremes. The operating conditions
simulated test performance of the airfoil when close to stalling. Finally, the
objectives are to maximise life and minimise drag.

According to our observations and the nature of aerodynamic problems,
the constraints and method of shape manipulation lead to many infeasible
solutions, which make the problem highly sensitive to variations in the shape
parameters.

4 Results and discussion

In this section the mopso algorithm is equipped with the different topologies
and compared with nsga-ii and mots. As is the convention, we set parame-
ters c1, c2 = 2 in (1) as per the advice of Shi and Eberhart [8]. The inertial
weight w was decreased linearly from 0.9 to 0.4 for this algorithm as per
Eberhart and Shi [12]. For nsga-ii, the crossover and mutation were chosen as
blend and Gaussian [5]. List size, neighbourhood size, and movement method
were set to 15, 20 and swap, respectively, as recommended by Jaeggi et al. [6].
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Figure 4: Attainment surfaces (the true Pareto front is unknown).

All random values were chosen from a uniform random distribution in the
interval [0, 1] . The stopping criterion is maximum number of iterations (200)
and all algorithms were implemented in Python. Finally, each algorithm was
run on the problem four times and the best attainment surface selected.

As seen in Figure 4, the attainment surfaces achieved by most of the mopso
variants completely dominated those of nsga-ii. The global topology yielded
the best results, followed by local and von Neumann topologies. In other words,
mopsog dominates some topologies, whereas mopsol dominates others.
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The range of Pareto solutions obtained are shown in Figure 4. For example,
mopsog provides lift from about −1.65 to −1 (expressed as a negative value
to allow expression of the problem as one of minimisation) and drag from
0.47 to 0.75, whereas mopsol provides lift from approximately −1.55 to −1.29
and drag from 0.53 to 0.57. In general, all mopso algorithms have significantly
greater range of solutions compared to mots. The reason for this might be
due to the characteristics of the 2D airfoil problem search space.

The histories of particles within the search space, in terms of feasible and
infeasible regions, are illustrated in Figure 5. The white squares indicate
the infeasible solutions, whereas the black ones show the feasible solutions.
This figure shows that in some cases more than half of the trial solutions
tested were infeasible, suggesting that the search space of the 2D airfoil design
problem has only sparse feasible regions. Considering this characteristic, a
possible reason for the superior results of mopso algorithms is that they
use established feasible solutions as guides for particles. Even if a particle
strays into infeasible areas of the search space, it has a reference point in the
feasible area to guide its search. However, mots avoids infeasible regions by
temporarily adding them to a blacklist which makes it more difficult for it
to cross infeasible areas to find new feasible solutions to exploit. Note that
the blacklist in mots was established to store unpromising solutions with
the purpose of avoiding possible infeasible regions around them. nsga-ii
also does not provide good exploitation because it ignores solutions in the
previous generations which might have helpful information about the feasible
areas of the search space.

According to these results, mopso has an ability to exploit promising solutions
(primarily the non-dominated solutions) in the presence of a large number of
infeasible solutions, making it well suited to problems of this nature. Handling
feasibility is a critical capability in optimisation, especially in aerodynamic
problems.

The behaviour of particles in mopso variants with different topologies is
also interesting to consider. As seen in Figure 5, at first mopsol finds just
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Figure 5: Feasible and infeasible particles in the search space for, from left to
right, topologies mopsog, mopsol, mopsow and mopsov. White squares
indicate infeasible solutions and black squares feasible solutions.

a few feasible solutions in the initial population. Information about the
feasible regions is communicated to nearest neighbours, slowly spreading out
through the population, around the ring shown in Figure 1(b). A similar
pattern is also observed for mopsov, but the spread of the information about
feasible solutions is more rapid due to the greater degree interconnectivity
in the network, as seen in Figure 1(d). In contrast, all particles in mopsog
immediately have global knowledge of feasible particles since they are globally
interconnected, as shown in Figure 1(a), and rapidly move into feasible regions.
They do not appear to ‘cluster’ around just a few feasible regions like mopsol
and, to a lesser extent, mopsov. Possibly ‘churning’ or rapid changing
of guide particles (the particles pbest and gbest in (1)) leads to a greater
degree of exploration and less focus on exploitation. Further investigation
of particle dynamics is required to confirm this hypothesis. mopsow seems
to show behaviour midway between the other mopso approaches. Initially
few feasible solutions are found, but when an attractive feasible solution is
found knowledge of it is immediately spread to all particles via the ‘hub’ of
the wheel. It is not clear from the particle histories shown in Figure 5 alone
whether this leads to intensive exploitation of just a few feasible solutions.

Since the investigated problem has two objectives the behaviour of the algo-
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Figure 6: Parallel coordinates.

rithms in finding the final optimum designs is not easy to extract. Therefore,
we need some tools for extracting information from the results. One of the
methods for post-analysis of the results is parallel coordinates figures [13].
Parallel coordinates were first proposed by Inselberg in 1985 [14] for visualising
information. This method maps an n dimensional space to indexed subsets
of a two dimensional space (Rn 7→ R2). According to Kipouros et al. [13],
the complexity of analysis is reduced by parallel coordinates. Moreover, this
method of visualisation assists with easily extracting patterns and useful
information from the results because it is more readily understandable for
users. In addition, there is potential to reveal information about the nature
of the problems. A parallel coordinates representation of the solutions found
by various algorithms is presented in Figure 6.
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Figure 6 shows that mopso algorithms provide much more diverse values
for the parameters compared to mots. Among the mopso variants, mopsol
shows discontinuous patterns for two of the parameters (P5 and P6) confirming
it exploited just a few feasible regions, as the patterns in Figure 5 suggested.
mopsow again shows results between those of mopsog and mopsol. However,
it missed the diversity of values for P8 that were found by mopsog, so is
possibly exploiting fewer feasible regions. Comparing the plots, P6 has a wide
range of values compared to other parameters. This suggests that Ly

3 and,
to a lesser extent, P8 = Ly

4 adopt a wide range of values across solutions in
the Pareto optimal set, from solutions with high lift to those with low drag.
In other words, movements of the trailing control points in the Y direction
play key roles in defining the final values of lift and drag. This concept is
evident in the design of aircraft wings where the flaps on the trailing edge of
a wing are adjustable, allowing aircraft to develop high lift during take-off
and landing, but minimise drag when cruising.

The results using nsga-ii are similar to those of mopso, with similar ranges
of parameters. This corresponds to the broad extent of the attainment surface
for nsga-ii in Figure 4. However, as seen in Figure 4, mopsog and mopsol
have attainment surfaces that are further converged than nsga-ii, dominating
its results across the majority of the front, as was observed earlier.

The optimised shapes of airfoils are shown in Figure 7. The effect of the
diverse solutions on the airfoil shapes are apparent. The mopso algorithm
provides decision makers with a wide range of design options.

5 Conclusion

The effects of different topologies on mopso algorithms were investigated.
The 2D airfoil design was selected to examine the algorithms and proved to
be a challenging problem, due to the sparsity of feasible solutions. Also, a
comparative study was undertaken with nsga-ii and mots.
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Figure 7: Search history of mopsog front and the optimised airfoil shapes.

The results showed that mopso algorithms dominated the results of nsga-ii
and provided much more diverse results compared to mots. The superior
results of mopso appeared to be due to its superior ability to deal with
the high number of infeasible solutions over the course of iterations. mopso
appeared capable of crossing infeasible regions, whereas mots ignored search
agents once they became infeasible and nsga-ii lost information about feasible
solutions between generations. Finally, the results from different communi-
cation topologies in mopso revealed that topologies with lower degrees of
interconnectivity tended to over-exploit the rare feasible solutions found at
the expense of exploration, delivering poorer approximations to the Pareto
front.

For future studies it would be interesting to further explore the reasons
underlying the superior performance of mopso using a global communication
topology. Further analysis of search agents may also find other reasons for
the different performance of the algorithms.
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