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A lattice refinement scheme for finding
periodic orbits
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Abstract

A lattice refinement scheme based on the principle of linearized
stability is introduced to locate periodic orbits in a two-dimensional
map. The method locates all periodic orbits of a specified order within
a given starting window and it can be equally well applied when the
map is only known implicitly, e.g., as a two-dimensional surface of
section arising from a three-dimensional flow. Periodic orbits in the
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Hénon Map, the Predator-Prey Map, the Rössler Flow, and the Lorenz
Flow are constructed as illustrations of the method.
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1 Introduction

In recent years there has been much interest in accurately computing unsta-
ble periodic orbits of chaotic dynamical systems. For example in Quantum
Mechanics a weighted sum over periodic orbits yields quantum mechanical
energy level spacings [1] and in Statistical Mechanics a different sum over
unstable periodic orbits, weighted according to the values of their Liapunov
exponents, can be used to calculate thermodynamic averages [2].

A popular brute force method for finding p-periodic orbits of chaotic
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dynamical systems is to search a long chaotic trajectory for near recurrences
between phase space points after p crossings on a surface of section and
then to average over the near recurrences. The method introduced in this
paper, while motivated by the problem of finding periodic orbits in three-
dimensional flows, provides a systematic method for finding periodic orbits
in general two-dimensional maps.

The method utilizes the principle of linearized stability to search an initial
trial lattice for a lattice cell containing a near recurrence. It then uses a
succession of lattice refinements based on the principle of linearized stability
to converge towards exact recurrence points. We have restricted our attention
to finding p-periodic orbits of two-dimensional maps (and three dimensional
flows) however the method could be readily extended to finding periodic
orbits in higher dimensional systems.

Our scheme is similar to other variants of Newton’s method (see for ex-
ample, [6, Appendix E] and [7, Chapter 10]) in that it utilizes information
about the local dynamics of the map to make further refinements. An alter-
native method, the “topological degree” method [3, 4, 5], makes refinements
using a generalized bisection method based on function evaluations at the
vertices of polyhedra. Key advantages of the lattice refinement scheme are:
(i) it systematically searches for all periodic orbits in a given starting window;
and (ii) it does not need good starting approximations to locate the periodic
orbits. In general, other schemes require ‘good’ initial guesses to find a single
periodic orbit. In the variants of Newton’s method a good initial guess is
one in which the local dynamics in the vicinity of the guess are similar to
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the local dynamics in the vicinity of the single periodic orbit of interest. In
the case of the topological degree method a good initial guess is a polyhedra
that contains only the one periodic orbit in its interior. These methods may
be preferred when sufficiently good guesses are available.

2 Lattice Refinement Scheme

The first step in the lattice refinement procedure is to identify a starting
window {(x, y) | xmin ≤ x ≤ xmax ; ymin ≤ y ≤ ymax}. Some knowledge
of the dynamical system would assist in this choice however the speed of
the algorithm makes it feasible to investigate large initial windows without
a priori knowledge. In the case of a three-dimensional flow this starting
window would be a region on a two-dimensional Poincaré surface of section
that is transverse to the flow. The search for periodic orbits is confined to
the starting window.

The next step is to cover the window with a uniform rectangular lattice
of n × m cells by defining lattice vertices (xj,k, yj,k):

xj,k = xmin + (j − 1)dx, j = 1, . . . , n + 1

yj,k = ymin + (k − 1)dy, k = 1, . . . , m + 1

where dx = (xmax − xmin)/n and dy = (ymax − ymin)/m. Now integrate the
equations of motion using each of the lattice vertices as initial conditions and
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record the evolved co-ordinates of the lattice vertices (x′
j,k, y

′
j,k) at the next

intersection with the surface of section. The evolved lattice vertices (which
can be located accurately using Hénon’s method [8] if the map is only defined
implicitly as a Poincaré map) are related to the original lattice vertices by

(x′
j,k, y

′
j,k) = M(xj,k, yj,k).

Our aim is to find the fixed point (x̄, ȳ) of the map M . If M is a Poincaré
map then this fixed point might correspond to a fixed point of the flow or a
point on a period-one orbit.

For each lattice cell, the initial lattice vertices and the evolved vertices
can be used to determine four affine transformations T which approximate
the map M . In general T is defined by

(
x′

y′

)
= A

(
x
y

)
+ b =

(
a b
c d

)(
x
y

)
+

(
e
f

)
. (1)

A particular affine transformation for a given cell is uniquely specified by the
transformation of three of the vertices. As an example, for the lattice cell
with vertices

[(xj,k, yj,k), (xj+1,k, yj+1,k), (xj,k+1, yj,k+1), (xj+1,k+1, yj+1,k+1)],

the affine transformation that takes

[(xj,k, yj,k), (xj+1,k, yj+1,k), (xj,k+1, yj,k+1)]
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to
[(x′

j,k, y
′
j,k), (x

′
j+1,k, y

′
j+1,k), (x

′
j,k+1, y

′
j,k+1)]

has

a = (x′
j+1,k − x′

j,k)/α

b = (x′
j,k+1 − x′

j,k)/β

c = (y′
j+1,k − y′

j,k)/α

d = (y′
j,k+1 − y′

j,k)/β

e = x′
j,k + xj,k(x

′
j,k − x′

j+1,k)/α + yj,k(x
′
j,k − x′

j,k+1)/β

f = y′
j,k + xj,k(y

′
j,k − y′

j+1,k)/α + yj,k(y
′
j,k − y′

j,k+1)/β .

The constants α and β denote the lattice spacing in the x and y directions
respectively. Each of the affine transformations for a given cell has a fixed
point (x∗, y∗) given by(

x∗
y∗

)
= (I − A)−1b =


 e−ed+bf

1−d−a+ad−bc

f−fa+ce
1−d−a+ad−bc


 . (2)

The four affine transformations yield different fixed points in general. How-
ever if M is of the form

x′ = f1(x) + g1(y)

y′ = f2(x) + g2(y) (3)

where f1,2(x) and g1,2(y) are arbitrary functions then each of the four affine
maps T for a given cell is identical. A linear map is a special case of Equa-
tion (3) where f1,2(x) and g1,2(y) are linear functions.
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In general fixed points of the affine maps may or may not approximate
fixed points (x̄, ȳ) of the map M . Suppose however that fixed points of M are
located inside the initial window. From the principle of linearized stability
(see for example, [9, Chapters 4,5]) it follows that M can be approximated by
its linearization in the vicinity of fixed points. Hence the fixed points iden-
tified by the affine transformations of lattice cells provide crude approxima-
tions to the fixed points of M . Improved approximations are then possible by
calculating fixed points of affine transformations of smaller cells in the neigh-
bourhood of the crude approximations. Fixed points of linearizations with
increasingly smaller cells in the neighbourhood of these revised fixed point
approximations provide increasingly better approximations. Eventually the
process identifies a cell containing the fixed points of all four affine transfor-
mations. This suggests that the identified cell contains the fixed point of the
map.

We use the above observations as the basis for an algorithm to deter-
mine a cell which contains a fixed point of M . From the original lattice co-
ordinates and the evolved lattice co-ordinates we identify those cells which
contain fixed points of the linearizations - considering all four affine transfor-
mations for all cells. Possible candidatefixed points of M are now specified to
within the size of these selected cells. An improved estimate for the putative
fixed point (x̄, ȳ) in a cell γ can be obtained by repeating the procedure,
but this time using the vertices of the cell γ to replace the previous values
of (xmin, ymin) and (xmax, ymax). Proceeding in this iterative fashion refined
estimates of the putative fixed points of M and thus the period-one orbit
can be obtained. This process can be continued until the lattice cell size is
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smaller than a specified tolerance ε. At each stage of the process the origi-
nal grid points and the putative fixed points are all evolved to determine if
they are true fixed points to within the specified tolerance ε. The numerical
estimates of the fixed points are obtained as an average of the putative fixed
points (x∗, y∗) and the evolved putative fixed points (x′∗, y′∗) that satisfy the
condition d(x∗, y∗) ≤ ε where the orbital closure error, d(x∗, y∗), is defined
by

d(x∗, y∗) =
√

(x′∗ − x∗)2 + (y′∗ − y∗)2.

The linear test may fail to yield a putative fixed point for a given cell
which does contain a fixed point of the map M if the lattice size is too
large to approximate M by affine maps. To address this possibility the
procedure could be repeated using larger values for n and m or a smaller
starting window. Our experience suggests that a reduction in window size is
to be preferred over increases in n and m since such increases significantly
reduce the speed of the algorithm. Furthermore the limiting values n =
(xmax − xmin)/ε and m = (ymax − ymin)/ε are equivalent to a brute force
search. In all of the examples below our choice n = m = 3 reveals all
possible fixed points within the starting windows.

Another possible problem may arise if one of the lattice vertices is an
exact fixed point. It is a simple matter to identify such possibilities in any
given lattice and then to remove the problem, for example by reselecting n
and m to provide a new incommensurate lattice.

Higher order periodic orbits can be found in an analogous fashion. First
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iterate the map p times using each of the lattice points (xj,k, yj,k) as initial
conditions and record the evolved co-ordinates of the lattice points (x′

j,k, y
′
j,k)

after the pth iteration. In a flow the implicit map is iterated p times by
numerically integrating the equations of motion and finding the pth intersec-
tion with the surface of section. In either case the evolved lattice points are
related to the original lattice points by

(x′
j,k, y

′
j,k) = Mp(xj,k, yj,k)

The procedure described above for finding the fixed points of M can be used
to find the fixed points of Mp. The fixed points of Mp that are not also fixed
points of M q where q < p are points on a p-periodic orbit.

3 Numerical Examples

The lattice refinement scheme for finding periodic orbits can be implemented
very efficiently using recursive programming. In the numerical results re-
ported below we implemented the method using recursive subroutine calls in
fortran 90.

To illustrate the lattice refinement scheme we have calculated periodic
orbits in:
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1. the Hénon Map [10], a special case of Equation (3),

x′ = y + 1 − ax2

y′ = bx

with a = 1.4 and b = 0.3;

2. the Predator-Prey Map [11]

x′ = ax(1 − x) − xy

y′ = bxy

with a = 3.6545, b = 3.226;

3. the Rössler Flow [12] (the y and z variables have been interchanged in
our representation of the Rössler flow for ease of presentation)

ẋ = −y − z

ẏ = b + y(x − c)

ż = x + az

with a = 0.2, b = 0.2, c = 5.7 and surface of section z = 0; and

4. the Lorenz Flow [13]

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = xy − bz

with σ = 10, r = 28, b = 8/3 and surface of section z = 27.
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Figure 1 shows cells that were explored under subsequent lattice refine-
ments in the search for the period one orbit in each of the above systems
using a tolerance of 0.001, an initial window x ∈ [−9, 9] and y ∈ [−9, 9] and
a 3 × 3 lattice.

The lattice refinement scheme was extremely efficient in the case of the
Hénon Map where only one cell containing a spurious fixed point was exam-
ined.

The best numerical estimates of the fixed points (determined by the small-
est orbital closure error d(x∗, y∗)) are listed in Table 1. We have calculated
the eigenvalues for each of the four affine transformations for each of the cells
containing the period-one orbits. The average of the maximum eigenvalue
from the four transformations and the average of the minimum eigenvalue
from the four transformations are listed under the heading 〈λ∗〉 in Table 1.
The Liapunov exponents Λ can be readily found from Λ = log(| 〈λ∗〉 |). In
cases where exact results for the fixed points and eigenvalues can be calcu-
lated these exact results are also listed.

The numerical fixed points for the Rössler Flow are points on a period-
one orbit. The complete periodic orbit is shown superimposed on the Rössler
strange attractor in Figure 2(a). The numerical fixed points for the Lorenz
Flow are actual fixed points of the flow rather than points on a period-
one orbit. Indeed there is no period-one orbit of the Lorenz Flow that is
transverse to the z = 27 surface of section. The lowest order orbit is period-
two in the sense that it pierces the surface of section twice before closure.
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Figure 1: Cells that were explored using the lattice refinement scheme with
a 3× 3 lattice for (a) the Hénon Map, (b) the Predator map, (c) the Rössler
Flow (on z = 0), and (d) the Lorenz Flow (on z = 27).
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Table 1: Numerical values Z∗ and exact values (Z̄) of fixed points x, y and
eigenvalues λ.

x∗ y∗ 〈λ∗〉
(x̄) (ȳ) (λ̄)

Hénon Map 0.63135471 0.18940604 0.1560, -1.9228
(0.63135447) (0.18940634) (0.1559, -1.9237)
-1.1313534 -0.33940619 3.2569, -0.09210

(-1.1313544) (-0.33940634) (3.2598, -0.09209)
Predator Map 0.72636465 3.9×10−6 2.3453, -1.6593

(0.72636475) (0.0) (2.343, -1.6545)
0.3099849 1.521652 0.43304 ± 1.0960I

(0.3099814) (1.521672) (0.43358 ± 1.0958I)
4.3×10−6 -3.0×10−6 3.65449,2.2×10−12

(0.0) (0.0) (3.65450, 0.0)
Rössler Flow -7.211118 0.0155446 7.3×10−11, -2.4027
on z = 0
Lorenz Flow -8.485281346 -8.485281333
on z = 27 (-8.485281375) (-8.485281375)

8.485281356 8.485281352
(8.485281375) (8.485281375)
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Table 2: Numerical values Z∗ and exact values (Z̄) of period-two points
x1, x2; y1, y2 and eigenvalues λ.

x∗
1, x

∗
2 y∗

1 , y∗
2 〈λ∗〉

(x̄1, x̄2) (ȳ1, ȳ2) (λ̄)
Hénon Map -0.47579, 0.97579 0.292739, -0.14274033 -3.020, -0.02979

(-0.47580, 0.97580) (0.292740, -0.14274001) (-3.010, -0.02989)
Predator Map 0.3980158, 0.875625 8.7×10−6, -1.0×10−5 -2.0497, 3.6243

(0.3980181, 0.875617) (0.0, 0.0) (-2.0463, 3.6269)
Rössler Flow -4.656809, -8.194643 0.019401, 0.014439 2.8×10−11,−3.5113
on z = 0
Lorenz Flow +2.147367,−2.147367 −2.078048, +2.078048 1.3575, 0.0
on z = 27

We have also implemented the lattice refinement scheme to search for
higher order periods. The results for period-two orbits are summarized in
Table 2. Exact values for the Hénon Map and the Predator Map are listed
for comparison.

The period-two orbits for the Rössler Flow and the Lorenz Flow are
shown superimposed on the Rössler attractor and the Lorenz attractor in
Figures 2(b) and 2(c) respectively. Figure 2(d) shows a period-five orbit for
the Lorenz Flow identified using the lattice refinement scheme.
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Figure 2: Periodic orbits in: (a), (b) the Rössler Flow on z = 0; and (c),
(d) the Lorenz Flow on z = 27. Initial conditions are (a) x = −7.211118,
y = 0.015544; (b) x = −4.656809, y = 0.019401; (c) x = 2.147367, y =
−2.078048; (d) 4.250440, y = 1.008479. The blue lines show periodic orbits
and the red lines show the strange attractor.
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