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Detecting changes in time series of network
graphs using minimum mean squared error

and cumulative summation

B. Pincombe1

(Received 28 July 2006; revised 3 August 2007)

Abstract

Through characterising a computer network as a time series of
graphs, with ip addresses on the vertices and edges weighted by the
number of packets transmitted, we apply graph distance metrics to
arrive at a measure of the distance between the network at differ-
ent times. Two computationally simple methods of detecting change
points in a one dimensional time series of this distance data are pro-
posed. These techniques are cumulative summation and minimum
mean squared error. This offers a very space efficient method of de-
tecting change points as only the time series of graph distances and the
network graph for the last time slice need be kept. The two techniques
are compared on a dataset containing 102 consecutive working days
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of tcp/ip traffic collected from five probes on the enterprise network
of an organisation with many tens of thousands of employees. Net-
work managers identified three highly anomalous days, one a change
point associated with the introduction of a web based personnel man-
agement system. Computationally simpler graph distance metrics are
shown to yield better results than their more complicated counterparts
when coupled with either change point detection technique.

Contents

1 Introduction C451

2 Constructing the time series of graph distances C455

3 Change point detection methods C459
3.1 Minimum mean squared error . . . . . . . . . . . . . . . . C460
3.2 Cumulative summation . . . . . . . . . . . . . . . . . . . . C462

4 Results C462

5 Discussion and conclusion C469

References C470

1 Introduction

Graphical representations are widely used in computer vision and pattern
recognition for character recognition [12], three dimensional object recogni-
tion [21], fingerprint classification [15], video indexing [18] and image reg-
istration [3]. Unknown objects are represented as graphs and compared to
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known models stored in a database, transforming a difficult recognition prob-
lem into a more tractable graph matching problem [2]. The broad literature
available on graph distance metrics has been successfully transitioned to ar-
eas as diverse as text data mining [4] and detection of change in computer
networks [5, 6, 19]. This article builds on the use of graph distance metrics
to detect change in computer networks to consider the problem of detecting
changes in the rate of change in computer networks.

Computer networks are constantly in flux but the patterns of change can
be quite stable. Subtle network faults or gradual variations in usage can alter
these patterns of change. Automated tip-offs advising system administrators
of the time at which a suspected change in the rate of change occurred can be
useful so long as they have low false alarm rates, high detection rates, minimal
time lags, low system impact and low processing and memory requirements.
The exact level and priority order of each of these requirements varies from
system to system; for example, in some critical systems a high false alarm
rate may be acceptable if needed to gain a high detection rate.

In this article, communications networks are represented as a time se-
ries of network graphs. The graph distances between sequential graphs are
calculated using ten commonly used graph distance metrics: weight [19],
Maximum Common Subgraph weight, mcs vertex, mcs edge [19, 6], edit [2],
median edit [5], spectral, modality [13], diameter [8] and entropy distances.
This radically reduces the amount of information that needs to be stored,
as only the number representing the distance from the last graph to the
present one and the graphs needed to calculate the next graph distance need
be retained. These time series of graph distances are then tested for serial
correlation of error terms to see if they meet the definition of a mean-shift
series. If they do, Minimum Mean Squared Error and cumulative summation
are used recursively to find change points. This is done off-line and over
the entire time series in order to show that this method works even with
long time series. In practice, the change point detection techniques would
be applied on-line over a window of points much shorter than the entire se-
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ries considered in the example thus increasing the chances there is only one
change in the interval considered and improving the accuracy.

The example used is the problem that initially motivated this work. A
total of 102 consecutive working days of tcp/ip traffic was collected from
five probes on an enterprise network servicing several tens of thousands of
employees. Network administrators identified changes in patterns of change
beginning on days 22, 64 and 89. Prior to doing this they had seen a plot
of the day-to-day distances based on the median edit graph distance metric
and it is important to note that these days are outstanding peaks on that
plot (see Figure 1). The introduction of a web based personnel manage-
ment system and its growing use across the organisation was suggested as
a reason for the alteration in change patterns detected from day 64 but no
reasons were given for the choice of the other two days. This example still
allows demonstration that the techniques described in this article can work
in a timely manner on a large real-world dataset containing multiple change
points, producing a memory efficient representation of day-to-day changes
and results approximating those of human operators.

The errors in the time series produced by mcs weight were definitely too
correlated to enable the application of either cumulative summation or mmse
and those in the weight and mcs edge generated time series were probably
too correlated and so were excluded. Of the remaining time series the one
generated by the diameter distance metric produced the best combination of
actual detections and false alarms. None of the change points were detected
through use of mmse on time series generated using the spectral, entropy
and modality distance metrics, but nor were any false alarms created. When
mmse was used on the mcs vertex generated time series two of the three
change points were detected with five false alarms, one of which was next
to the other change point. For the edit distance time series mmse detected
one change point and produced five false alarms, one of which was the neigh-
bour of a change point. Use on the diameter distance time series produced
two detections and two false alarms. Both change point detection methods
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Figure 1: Median edit distance time series with change points detected
using mmse with α = {0.01, 0.02, 0.03, 0.04, 0.05} .

performed poorly on the computationally intensive spectral and modality
distance generated time series but that generated by the (approximately half
as) computationally intensive diameter distance time series produced the best
results. There is a greater degree of time averaging in the distance metrics
that performed poorly. It could be that crisp change in the mean is required
for techniques like mmse and cumulative summation that are built on the
assumption that the change point is a shift of the mean. Testing on simulated
networks with known types of change over set regions is necessary before the
trade off between false alarm rate and accuracy can be accurately estimated.
This work can be extended to an on-line environment.
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2 Constructing the time series of graph

distances

The communications network for each day is characterised as a graph G =
(V,E) containing a finite set of vertices V and edges E. Vertices repre-
sent ip addresses. Edges, (u, v) ∈ E , are defined by the pair of vertices,
u and v, that they join. Edges represent packet transmission between ver-
tices, so (u, v) ∈ E is an ordered pair, and the edges are, therefore, directed.
Two vertices u, v ∈ V are considered to be adjacent, u ↔ v , if there is an
edge defined in terms of u and v; that is, u and v are joined by an edge.
Vertices, edges and their combinations associated with a graph, G, are re-
ferred to as elements. All ten distance measures are metrics. Therefore,
the distance between two graphs is a positive real number, d(G,H) ∈ R+ ;
the zero distance is equivalent to graph isomorphism, all distance measures
are symmetric, d(G,H) = d(H,G) , and they satisfy the triangle inequality,
d(G,F ) ≤ d(G,H) + d(H,F ) . The weight values, wV and wE, assigned to
elements of the graph G = (V,E,wV , wE) are symbolic for vertex weights,
that is wV : V → LV where LV are unique one-to-one labels for each v ∈ V ,
and numerical values based on the number of packets sent for edge weights
with the weight wE : E → R+ . All graphs have a unique one-to-one sym-
bolic value for each vertex weight and are thus considered to be labelled. The
number of vertices in G = (V,E) is denoted by |V | and the number of edges
by |E|.

Several of the graph topology distance measures rely on identification
and comparison of the elements in common between graphs by finding the
Maximum Common Subgraph (mcs) between graph pairs [19]. A subgraph
of G = (VG, EG, w

G
V , w

G
E) is a graph S = (VS, ES, w

S
V , w

S
E) where VS ⊆ VG

and ES ⊆ EG ∩ (VS ×VS) . The vertex weight wSV of S is wGV restricted to VS
and the edge weight wSE of S is wGE restricted to ES. The maximum common
subgraph F of G and H, F = mcs(G,H) , is the common subgraph with the
most vertices, that is, there is no other common subgraph K of G and H,
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with more vertices than F .

The Weight distance [19] between two graphs is

d(G,H) = |EG ∪ EH |−1
∑
u,v∈V

|wGE(u, v)− wHE (u, v)|
max{wGE(u, v), wHE (u, v)}

, (1)

where w
(·)
E (u, v) is the weight of the edge joining u and v; and d(G,H) is the

distance between graphs G and H [19]. The MCS Weight distance [19, 6]
simplifies calculations by only considering those edges appearing in the mcs
and is

d(G,H) = |EG ∩ EH |−1
∑
u,v∈V

|wGE(u, v)− wHE (u, v)|
max{wGE(u, v), wHE (u, v)}

, (2)

where w
(·)
E (u, v) is the weight of the edge joining u and v; and d(G,H) is the

distance between graphs G and H [19]. The MCS Edge distance [19, 6] is

d(G,H) = 1− |mcs(EG, EH)|
max{|EG|, |EH |}

, (3)

where |mcs(EG, EH)| is the number of edges in the maximum common sub-
graph of G and H and max{|EG|, |EH |} is the maximum of the number of
edges in either G or H [19]. This metric will always be in the interval [0, 1]
with proximity to 0 indicating maximal similarity. The MCS Vertex dis-
tance [19, 6] is also in the interval [0, 1] with proximity to 0 indicating greater
similarity and is

d(G,H) = 1− |mcs(VG, VH)|
max{|VG|, |VH |}

, (4)

where |mcs(VG, VH)| is the number of vertices in the maximum common sub-
graph of G and H and max(|VG|, |VH |) is the maximum of the number of
vertices in either G or H [19]. The Graph Edit distance [17, 2, 19, 5, 6]
between graphs G and H is calculated by evaluating the sequence of edit op-
erations required to make graph G isomorphic to graph H using the formula

d(G,H) = |VG|+ |VH | − 2|VG ∩ VH |+ |EG|+ |EH | − 2|EG ∩ EH | , (5)
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where EG and VG are the edges and vertices of graph G and EH , and VH are
the edges and vertices of graph H [17]. The computational complexity of this
measure is reduced by assuming unique labeling of the nodes in the graph [5].

The median graph Ḡ of a sequence of n graphs S = (G1, . . . , Gn) min-
imises the sum of distances between itself and the members of S for a par-
ticular distance metric [5]. The median graph depends on the distance met-
ric, d(Gi, Gj), chosen but the general formula for the median graph is

Ḡ = arg min
G∈S

n∑
i=1

d(G,Gi) . (6)

The graph edit distance metric, Equation (5), is used both to construct Ḡ
and to calculate the distance from Ḡ to other graphs [5]. The median
graph G̃n is calculated from a sequence of graphs (Gn−L+1, . . . , Gn) in win-
dow of length L. This window length is arbitrarily chosen to be five in
accordance with Dickinson et al. [5]. The median graph edit distance to
the next graph, d(G̃n, Gn+1), is then calculated using graph edit distance
and is referred to herein as median graph distance. The distance between
G̃n and Gn+1 is classified as abnormal if

d(G̃n, Gn+1) ≥ αφ , (7)

where α = 2.5 is a parameter set following Dickinson et al. [5], and the
average deviation of the graphs in the window, (Gn−L+1, . . . , Gn), from the
median graph, G̃n, is

φ =
1

L

n∑
i=n−L+1

d(G̃n, Gi) . (8)

The Modality distance [13] between graphs G and H is the absolute
value of the difference between the Perron vectors of these graphs:

d(G,H) = ‖π(G)− π(H)‖ , (9)
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where π(G) and π(H) are the Perron vectors of graphs G and H respectively.
The Perron vector πm×1 satisfies

Aπ = ρπ , π > 0 ,
m∑
i=1

πi = 0 , (10)

where Am×m is the non-negative irreducible adjacency matrix Am×m with
spectral radius ρ. The Diameter distance [8] between graphs G and H is
the difference in the average longest shortest paths for each graph and is

d(G,H) =

∣∣∣∣∣∑
v∈VH

maxd(H, v)−
∑
v∈VG

maxd(G, v)

∣∣∣∣∣ , (11)

where maxd(G, v) is the distance to the vertex in G farthest away from v,
via the shortest path. The Entropy distance between graphs G and H is
the following difference between entropy-like values:

d(G,H) = E(H)−E(G) = −
∑
e∈EH

(
w̃He − ln w̃He

)
+
∑
e∈EG

(
w̃Ge − ln w̃Ge

)
, (12)

where w̃∗e = w∗e/
∑

e∈E∗
w∗e is the normalized weight for edge e. The Spectral

distance [10] between graphs G and H is calculated by using the k largest
positive eigenvalues of the Laplacian:

d(G,H) =


√[∑k

i=1 (λi − µi)2
] [∑h

i=1 λ
2
i

]−1

,
∑h

i=1 λ
2
i ≤

∑h
j=1 µ

2
j ,√[∑k

i=1 (λi − µi)2
] [∑h

j=1 µ
2
j

]−1

,
∑h

i=1 λ
2
i >

∑h
j=1 µ

2
j ,

(13)

where λi represents the eigenvalues of the Laplace matrix for graph G and
µi represents the eigenvalues of the Laplace matrix for graph H.

Distance measurements based on graph edit distance [2] and Maximum
Common Subgraph (mcs) based distances [9, 14] are thought to be more
error tolerant [2].
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The ten graph distance metrics discussed above each produce a time
series of graph distances between successive time slices of the network. In
the example used to demonstrate the methods proposed, these time slices are
working days but other, possibly non-constant, divisions are possible. What
remains to be done is the detection of change points in these time series.

3 Change point detection methods

Cumulative Summation and Minimum Mean Squared Error assume that the
time series adheres to a mean-shift model, that is, a time series with an
independent error structure. Mathematically, this means that the time series
S = X1, X2, . . . , XM is made up of the individual observations Xi = µi + εi
where µi are the mean values of the process and εi are the independently and
identically distributed (iid) random variations on that mean. The ongoing
disturbances, εi, are not correlated to one and other. This is not as restrictive
as the assumption of no serial correlation that must be met to use some other
change point detection techniques. A mean-shift causes serial correlation but
does not violate the assumption of independent errors. It is possible to test
to see if the independent errors assumption has been violated by directly
measuring the autocorrelations or by examining the variance ratios. For the
most part µi = µi+1 . Occasionally, the mean shifts and µi 6= µi+1 . In this
case the ith value in the time series is called a change point as the mean of
the underlying process has changed.

The original article on cumulative summation [16] suggested that change
points could be detected by moving through the time series and at each
point using a sequential probability ratio test. In this article, change point
detection is approached as a problem of off-line hypothesis testing where
the time series S = X1, X2, . . . , XM is viewed as a sequence of observed
random variables with conditional density pθ(Xk | Xk−1, . . . , X1) [1]. The null
hypothesis, H0, is that there is no change and the alternative hypothesis, H1,
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is that change occurs at time tc. Formally,

H0 : for all 1 ≤ k ≤M : θ = θ0

H1 : there exists t1 ≤ tc ≤ tM such that

for all t1 ≤ tk ≤ tc−1 , θ = θ0 ,

for all tc ≤ tk ≤ tM , θ = θ1 , (14)

where θ0 and θ1 are constant conditional density parameters. The require-
ments under such a situation are to maximise the power (the chance of re-
jecting H0 when it should be rejected), or recall, while minimising Type II
errors (the chance of rejecting H0 when it should not be rejected), or false
alarms. Although it is not done in this article, this can be framed as an
on-line change detection problem where the time series S = X1, X2, . . . , XM

is again viewed as a sequence of observed random variables with conditional
density pθ(Xk | Xk−1, . . . , X1) [1]. Prior to the change point at time tc,
θ = θ0 and after the change point θ = θ1 . The change point detection
method should aim to detect this change as quickly as possible both to alert
users and to minimise the chance of another change presenting itself before
the first change is detected. Cumulative summation and mmse are both able
to operate as stopping rules in an on-line framework.

3.1 Minimum mean squared error

mmse [1] sequentially splits the time series S = X1, X2, . . . , XM into two
segments M − 1 times, so S is split into S1 = X1 and S2 = X2, X3, . . . , XM ,
then into S1 = X1, X2 and S2 = X3, X4, . . . , XM etcetera until it is split into
S1 = X1, X2, . . . , XM−1 and S2 = XM . For each of these M − 1 splits the
Mean Squared Error is calculated

mse(m) =
m∑
i=1

(
Xi − X̄L

)2
+

M∑
i=m+1

(
Xi − X̄R

)2
, (15)



3 Change point detection methods C461

where X̄L =
(∑m

i=1Xi

)
/m is the mean of the series (X1, . . . , Xm) and X̄R =(∑M

i=m+1Xi

)
/(M −m) is the mean of the remainder of the series. This is a

measure of how well the data fits the means of the two segments. The value
of m yielding the Minimum mse is the best estimator of the last point before
the change, so the point m + 1 estimates the first point after the change.
To determine confidence in whether the mmse value calculated is indicative
of a candidate change point we use bootstrapping to obtain an estimate of
the error by randomly re-sampling the original dataset. This creates pseudo-
replicate datasets to which the mmse procedure is applied to see how likely it
is that the candidate change point was detected by chance. For the number
of bootstrap samples specified a bootstrap sample is generated by randomly
reordering the entries in the data set. In each case the mse for the bootstrap
sample is found when that sample is split at the point producing the minimum
mse for the actual data. Every time the mse for the bootstrap sample is
larger than the actual mse at the split point our confidence that the split
point is a candidate change point increases. The confidence level is calculated
by dividing the number of times the mse for the bootstrap sample is larger
than the mse for the original data set by the number of bootstrap samples.

If the confidence level is sufficient to be satisfied that there is a candidate
change point, then it is stored. The time series is broken at this candidate
change point and the analysis repeated for each segment, thus recursively
yielding lower level candidate change points. The level of the procedure
is incremented before each recursive call for the segments. This procedure
stops when the confidence in the candidate change point being significantly
different to random variation drops below a critical, user set, threshold (often
α = 0.01 or α = 0.05).

After all possible candidate change points are found in this manner,
their confidence levels are re-estimated. The confidence in some points may
fall and these are eliminated. The remaining points are considered to be
change points.
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3.2 Cumulative summation

Cumulative summation [16, 1, 22, 20] calculates the mean X̄ over the series
S = X1, X2, . . . , XM and forms the series of the cumulative summation of
the differences from this mean C = (s0, s1, . . . , sM) where s0 = 0 and sk =
sk−1 + Xk − X̄ . To determine whether a change point occurs in the series
the difference, 4C, between the maximum, maxi=1,...,M C, and minimum,
mini=1,...,M C, values of the set C is calculated and compared numerous times
to similar values from many bootstrap samples, 4Ck

b , where k = 1, . . . , B is
one of the B bootstrap samples, using the function D =

∑B
i=1 di where

di =

{
1 , 4C ≥ 4Ck

b ,
0 , 4C < 4Ck

b .
(16)

The confidence level that a change has occurred is D/B. If a change is
detected at a confidence level acceptable to the user, the time slice at which
the change is considered to have occurred is {k : |sk| = maxi=1,...,M |C|} .
That is, the time slice at which the cumulative sum of the differences from
the mean is furthest from zero. The time series is then split at this point
and the same process is applied recursively until no change point is found.

4 Results

An application of these techniques to the example that motivated this work
is described here in detail. The data set consists of 102 consecutive working
days of tcp/ip traffic collected from five probes on a large enterprise network.
Although the ip addresses were recorded in the original data set, the set used
in this example only looks at communications between different subnets to
keep the memory requirements down. Using this data, aberrant patterns of
change were identified by network administrators on days 22, 64 and 89. Only
on day 64 was a reason suggested, the introduction of a Web Based Personnel
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Table 1: Processing times, in seconds, for graph distance metrics.
Metric Time
Edit 0.16
mcs weight 0.18
mcs vertex 0.17
mcs edge 0.17
Spectral 4.32
Diameter 2.96
Entropy 0.47
Weight 0.42
Modality 4.94
Median Edit 1.17

Management System. Prior to identifying these days as dates of change in
the rate of change the network administrators saw the median edit distance
generated plot of day to day distances shown in Figure 1. The days they
chose as change points also happen to be the days with outstanding maxima
on this plot. As these maxima are not necessarily related to a change in the
rate of change there is some question as to the accuracy of the ground truth
used in this assessment.

Questions about the veracity of the identified change points do not affect
the saliency of the time taken to process all 102 single-day graph into a time
series of graph distances, as given in Table 1 for all ten graph distance met-
rics. This performance was achieved with Java code running on an unloaded
3.00 GHz Pentium 4 pc with 1 GB of ram using the Windows xp operating
system. Nor does it alter the fact that just under 80 MB of data was reduced
to somewhere in the order of a kilobyte of data (although the exact figure
varied slightly depending on the distance metric used).

Change point detection using seven of the ten graph distance metrics
coupled with both cumulative summation and mmse is demonstrated on a
data set consisting of 102 consecutive working days of tcp/ip traffic collected
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Figure 2: mcs vertex distance time series with change points detected using
mmse with α = {0.03, 0.04, 0.05} .

from five probes on a large enterprise network. Aberrant patterns of change
were identified by network administrators on days 22, 64 and 89. Only on
day 64 was a reason suggested, the introduction of a Web Based Personnel
Management System. Tests of serial correlation showed that the errors in
the time series produced by mcs Weight were too correlated to enable the
application of either cumulative summation or mmse. Furthermore, the two-
sided null hypothesis of no first-order autocorrelation in the residuals was
not rejected at the 5% significance level by the Durbin–Watson test [7, 11]
for the time series based on the mcs edge and weight distance metrics. It is
therefore highly likely that the mmse and cumulative summation approaches
are not applicable to the time series produced by these distance metrics in
this example. They are also excluded from consideration in this case.

In the figures in the results section the x-axis represents the number of
the day, and the y-axis represents the distance score. The days on which
the human experts consulted thought the changes occurred on are shown as
circles. If the change point detection algorithm detects these days as change
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Figure 3: Edit distance time series with change points detected using mmse
with α = 0.05 .

points they are shaded with the level of the detection appearing next to
them, otherwise they are hollow. Days on which the change point detection
algorithm produced false alarms are shown as unfilled diamonds.

For the seven time series to which mmse was applied, the spectral, entropy
and modality distance metrics do not result in any detections of change
points, nor produce any false alarms for α = 0.01 , α = 0.02 , α = 0.03 ,
α = 0.04 and α = 0.05 .

As seen in Figure 1 the median graph time series produces three false
alarms at all values of α tried. The first of these false alarms is a technical
artifact of the five point windowing used to construct the median edit distance
time series as the first five points are arbitrarily set to zero.

For α = 0.01 and α = 0.02 , mmse applied to the mcs vertex time series
detects no change points and yields no false alarms. When the 3%, 4%
and 5% confidence intervals are considered, the situation shown in Figure 2
occurs with two accurate detections and five false alarms.
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Figure 4: Edit distance time series with change points detected using mmse
with α = {0.01, 0.02, 0.03, 0.04} .
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Figure 5: Diameter distance time series with change points detected using
mmse with α = {0.04, 0.05} .
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Figure 6: Diameter distance time series with change points detected using
mmse with α = {0.01, 0.02, 0.03} .

When mmse is applied to the edit distance time series with 1% to 4%
confidence levels (see Figure 4), a single false alarm is produced. If a 5% con-
fidence level is used (see Figure 3), five false alarms and an accurate detection
occur. Note that one of the five false alarms is the day before an actual change
and another is out by two days. As all changes discussed here are changes
perceived by experts in the rate of change of the network, missing these
by one or two days could still produce a useful tip-off to those monitoring
the network.

Application of mmse to the time series resulting from application of the
diameter distance metric to the graphs for the 102 days gives the results
displayed in Figure 5 and Figure 6. Figure 6 shows that using 1%, 2%
and 3% confidence levels for mmse, a single change point is detected without
any false alarms. When confidence levels of 4% or 5%, (see Figure 5), are
used in mmse two change points are detected and two false alarms occur.

Using cumulative summation on the time series generated by the mcs



4 Results C468

0 20 40 60 80 100 120
−10

−8

−6

−4

−2

0

2

4
x 10

8

1
D

is
ta

nc
e

Day

Figure 7: Diameter distance time series with change points detected using
cumulative summation with α = {0.01, 0.02, 0.03, 0.04, 0.05} .

vertex, spectral, entropy and modality distance metrics produces no detec-
tions of change points and no false alarms. When cumulative summation
is used on the time series generated by the median edit distance, one false
alarm and no accurate detections are produced for integer confidence levels
from 1% to 4%, and a further two false alarms appear when the confidence
level is loosened to 5%. Similarly, the edit distance time series produces a
single false alarm and no accurate detections over the range of integer confi-
dence levels from 1% to 5%. Throughout this range of confidence levels the
use of cumulative summation on the time series produced by the diameter
distance metric resulted in one accurate detection and no false alarms as
seen in Figure 7. In this figure the upper line is the time series, the lower
line is the cumulative sum, the three dots appearing on both lines show the
ground-truth values of the change points and the filled dot on each line is
the detected change point.
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5 Discussion and conclusion

This article explores detecting a change in the pattern of change in a com-
puter network by representing the computer network as a time series of
graphs, using graph distance metrics to turn this into a time series of dis-
tances and then using either mmse or cumulative summation to find change
points in these time series. The summarisation of information involved in
transforming a time series of graphs to a time series of graph distances greatly
reduces the memory requirements. The example used to demonstrate the ap-
plicability of this method of detecting changes in the pattern of change is a
difficult real world problem. Of most interest are the tractable processing
times reported for turning the time series of network graphs into time se-
ries of graph distances. Assessment of the accuracy and false alarm rate of
the techniques is limited by uncertainty as to whether the human identified
change points are the only change points or are indeed change points. All
the same, use of a diameter distance generated time series with cumulative
summation detected one of the three points identified by systems adminis-
trators without producing any false alarms. This situation was the same for
low confidence levels when mmse was used but for higher confidence levels
another change point was detected at the cost of two false alarms. For a more
accurate assessment of the accuracy and false alarm rate it will be necessary
to study simulated data sets where the positions of and types of change in the
rate of change are known. For example, I expect that the mcs vertex metric
will produce good results when a change in the rate at which vertices start or
stop communicating occurs, and the mcs weight distance metric will produce
good results when the rate of traffic variation or level of traffic changes its
rate of increase or decrease.

The presence of multiple, but strongly correlated, time series of distances
based on different distance metrics makes multivariate approaches possible;
techniques such using Hotelling’s T 2 or principal components analysis could
be tried on this problem. As cumulative summation and mmse are both
able to operate as stopping rules in an on-line framework, future work could
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include applying such a framework to simulated data sets in order to get an
estimate of the delay for detection and the mean time between false alarms
is for each technique when coupled with each distance metric.
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also provided access to pre-prints of his articles with Wal Wallis and Matt
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was also provided by Wayne Taylor [20].
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