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Transonic flow calculations using a
dimensional splitting method
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Abstract

The time-dependent Transonic Small Disturbance equation, will
be reformulated in Hyperbolic Conservation Law form. In Hyperbolic
Conservation Law form, with dimensional splitting the equations can
be discretized and treated as a series of Riemann problems. Steady
subsonic and transonic flow calculations will be presented for a suitable
test configuration and where possible comparisons will be made with
analytic solutions.
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1 Introduction

For over fifty years it has been known that wings and control surfaces of
high speed aircraft are most unstable (aeroelastically), at transonic speeds.
The Transonic Small Disturbance (tsd) Equation [2] of transonic flow and
its approximations, is a common model equation for describing subsonic and
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supersonic flow close to the local speed of sound (transonic). The velocity po-
tential and hence the pressure (on the bounding surfaces of an aircraft), can
be determined from the solution of the tsd equation. In transonic flow there
is an embedded region of locally supersonic flow inside an otherwise subsonic
flow. Usually a shock discontinuity terminates the supersonic region. Re-
cent advances in numerical techniques have made possible the calculation of
transonic flow over realistic structures [2, 3, 4, 5]. The success of a numerical
scheme for transonic flow prediction depends on its capability of capturing
all the flow details while keeping the cost of computation low.

Our aim here is to develop numerical methods for the solution of the
tsd equation, written in Hyperbolic Conservation Law form. In Hyperbolic
Conservation Law form, the tsd equation can be recast as coupled Riemann
Problems (one in each dimension) using dimensional splitting. These Rie-
mann Problems are then solved by employing one of various one dimensional
finite volume methods. In this way the solution to be determined for flow
over a general multi-dimensional geometry can be obtained independent of
the meshing. Initially the tsd equation will be used to model the steady
subsonic flow over aerofoils for which the exact solution is known. Finally,
the result of steady transonic flow calculations over the NACA 0012 aerofoil
will be presented.
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2 Governing Equations

In two space dimensions the Transonic Small Disturbance (tsd) equation for
the perturbation velocity potential φ [2] may be written in the form

∂

∂t
(φx + φt) +

∂

∂x

(
φt +

β2

2ūM2
(φx − ū)2

)
− 1

M2

∂

∂z
φz = 0, (1)

where M is the free stream Mach number, and β and ū are given by

β2 = 1 − M2 and ū = β2/(M2(1 + γ)),

where γ is the ratio of specific heats. Here (x, z) represents a nondimen-
sional Cartesian coordinate system, x streamwise and z vertical, and t is a
nondimensional time variable. In nondimensional terms the fluid velocity is
v = ∇(x + φ). Equation (1) is locally hyperbolic representing supersonic
flow for φx > ū and elliptic representing subsonic flow for φx < ū.

If the upper and lower surface of the wing is defined as z = h±(x, t), then
the wing flow tangency condition is

φ±
z =

{
h±

x + ht , z = 0 unsteady flow,
h±

x , z = 0 steady flow.
(2)

The + and − superscript indicate the upper and lower wing surfaces. Across
the wake (behind the wing) there can be no jump in pressure or normal
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velocity. In terms of the perturbation potential these conditions are:

〈φz〉 = 0 on z = 0,
〈φx + φt〉 = 0 on z = 0 unsteady flow,
〈φx〉 = 0 on z = 0 steady flow.

Equation (1) can be written as a system of first order equations by defining

u = φx, w = φz, p = φx + φt and u = (u, w, p)T

and assuming φxz = φzx, giving in Conservation Law Form

∂u

∂t
+

∂

∂x
F(u) +

∂

∂z
H(u) = 0 (3)

with F(u) = (u − p, w, p − u +
β2

2ūM2
(u − ū)2)T ,

H(u) = (0,−p,− w

M2
)T .

Equation (3) can be expressed in quasilinear conservation law form as

∂u

∂t
+ A(u)

∂u

∂x
+ B(u)

∂u

∂z
= 0 (4)

where A and B are the Jacobian matrices of F and H respectively,

A(u) =


 1 0 −1

0 1 0

−1 + β2

ūM2 (u − ū) 0 1


 , B(u) =


 0 0 0

0 0 −1
0 − 1

M2 0


 .
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On the wing the flow tangency condition Equation (2) becomes

w± = h±
x + ht,

∂u

∂z

±
= h±

xx + hxt,
∂p

∂z

±
= h±

xx + hxt + htt

where for steady flow ∂
∂t

= 0 and on the wake 〈w〉 = 0 and 〈p〉 = 0.

A numerical solution of Equations (4) needs to be found on a finite com-
putational grid. At the outer boundaries of the grid suitable non-reflective
conditions must be applied. On the upstream and downstream boundaries
the appropriate far field conditions are

u =
∂w

∂x
= p = 0.

On the upper and lower boundaries the appropriate farfield conditions are

∂u

∂z
= w =

∂p

∂z
= 0.

3 Numerical Methods

Let time t be discretized such that tn = n∆t for n = 1, 2, . . . where ∆t is
the discrete time increment and the solution at (x, z, tn) is un. On each time
interval tn ≤ t ≤ tn+1 we have a two dimensional initial value problem (ivp)

pde ut + F(u)x + H(u)z = 0
ic u(x, z, tn) = un (5)



3 Numerical Methods C758

giving u(x, z, tn+1) when solved. It is convenient, computationally, to solve
this as a sequence of one dimensional ivps using dimensional splitting. That
is if t is the local variable t ∈ [0, ∆t], ivp (5) is approximated by the one
dimensional ivps

u∗
t + F(u∗)x = 0

u∗(x, z, 0) = u(x, z, tn)
(6)

and ut + H(u)z = 0
u(x, z, 0) = u∗(x, z, 0),

(7)

here u∗ denotes the temporal solution.

Let Lx(∆t) denote the solution operator for the x equation in time incre-
ment of ∆t and Lz(∆t) for the z equation, then a first order approximation
in time of u(x, z, tn+1) is

u(x, z, tn+1) = Lx(∆t)Lz(∆t)u(x, z, 0),

= Lx(∆t)Lz(∆t)un,

representing first solving the z equation followed by the solution of the x
equation. A second order approximation, which is computationally more
expensive, is

u(x, z, tn+1) = Lx(∆t/2)Lz(∆t)Lx(∆t/2)un.

The order of the operations does not affect the accuracy of the schemes but
may affect computational efficiency. Dimensional Splitting schemes are con-
structed using Taylor series expansions [1] which rely on the smoothness of
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u. Nonsmooth solutions may cause dimensional splitting schemes to fail de-
pending on the numerical method applied to each one dimensional equation.
Generally, schemes that smear discontinuities are most successful [6]. For
this reason we chose the Godonov method for (6) and Flux Vector Splitting
(fvs) for (7). Both of these methods are conservative methods which for a
general system of m one dimensional hyperbolic equations

ut + F(u)x = 0 (8)

with real and distinct eigenvalues λi for i = 1, 2, . . . , m, is of the form

un+1
i = un

i +
∆t

∆x

(
Fn

i− 1
2
− Fn

i+ 1
2

)
. (9)

The space domain [0, L] has been discretised into I computing cells Ii =
[xi− 1

2
, xi+ 1

2
] of regular size ∆x = L

I
with cell centre at xi for i = 1, 2, . . . , I.

ui represents the approximation of u(xi) and Fn
i+ 1

2

is the numerical intercell

flux at position xi+ 1
2

and time tn.

For the Godonov method Fn
i+ 1

2

= Fn(ui+ 1
2
(0)), where ui+ 1

2
(0) is the solution

evaluated at x = 0 of RP(i, i + 1), the local Riemann Problem with initial
states ui and ui+1. For fvs methods Fn

i+ 1
2

= F+(un
i ) + F−(un

i+1) where F+

and F− are components of F such that F = F+ + F−. If F satisfies the
homogeneity property F = Au, A is the Jacobian matrix of F, then F =
A+u + A−u where A+ = PΛ+P−1 and A− = PΛ−P−1 so that λ+

i ≥ 0 and
λ−

i ≤ 0 form the diagonal of the diagonal matrices Λ+ and Λ− respectively,
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and λi = λ+
i + λ−

i for i = 1, 2, . . . , m. If (8) is linear, (9) becomes

un+1
i = un

i +
∆t

∆x

[
A+(ui+1 − ui) + A−(ui − ui+1)

]
. (10)

This represents a simple downwind differencing of the z derivatives for λ+
i

and upwind differencing for λ−
i . This simple technique is found to give stable

schemes for scalar pdes. The stability of both methods is determined by

Sn
max

∆t

∆x
≤ 1,

where Sn
max is the maximum wave speed over the space domain at tn [6].

3.1 FVS applied to the z equation

We apply the fvs method to the linear ivp (7) with H defined as in Section 2.
Using the Steger and Warming definition of λ+

i andλ−
i

λ+
i =

1

2
(λi + |λi|) and λ−

=

1

2
(λi − |λi|),

where for H λ1 = − 1
M

, λ2 = 0 and λ3 = 1
M

, gives a numerical scheme first
order in time and z

u∗
j,k = un

j,k −
∆t

∆z

(
B+(un

j,k − un
j,k−1) + B−(un

j,k+1 − un
j,k)

)
, (11)
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for i = 1, 2, . . . , I and k = 2, 3 . . . , K − 1, and

B+ =


 0 0 0

0 1
2M

−1
2

0 − 1
2M2

1
2M


 and B− =


 0 0 0

0 − 1
2M

−1
2

0 − 1
2m2 − 1

2M


 .

Scheme (10) is stable, when ∆t and ∆z are chosen such that maxi |λi|∆t
∆z

≤ 1.

3.2 Riemann Problem for the TSD Equation.

The discretization of t and the space domain into I computing cells Ii, i =
1, 2, . . . , I, creates a series of local Riemann Problems, whose ith term is

ut + F(u)x = 0

u(x, 0) =

{
un

j,k = uL if x ≤ 0
un

j+1,k = uR if x > 0

Here t and x are taken to be the local variables t ∈ [0, ∆t] and x ∈ [−∆t
2

, ∆t
2

].

Following [6], we note that the eigenvalues of A are λ1 = 1−√
1 − α(u − ū),

λ2 = 1 and λ3 = 1 +
√

1 − α(u − ū) with corresponding eigenvectors k1 =

(1, 0,
√

1 − α(u − ū))T , k2 = (0, 1, 0)T and k3 = (1, 0,−√
1 − α(u − ū))T ,

where α = β2

ūM2 = 1 + γ. Of these λ2 is a linearly degenerate characteristic
field representing a contact discontinuity in the solution of w with wave speed
λ2 = 1. λ1 and λ3 are genuinely nonlinear characteristic fields [1] giving two
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possible wave types—shock waves and rarefaction waves. Across a shock wave
the Rankine Hugoniot condition ∆F = λS∆u, λS is the shock speed, and
the entropy condition λL ≤ λS ≤ λR are satisfied, while across a rarefaction
wave the generalised Riemann invariants

du

k1
i

=
dw

k2
i

=
dp

k3
i

,

where kj
i , j = 1, 2, 3 are the components of the eigenvector ki, i = 1, 2, 3, and

the entropy condition λR ≥ λL apply. Therefore we need to consider four
possible wave formations. If k1 is a rarefaction wave the generalised Riemann
invariants imply w is constant and

p∗ +
2

3α
(1 − α(u∗ − ū))

3
2 = pL +

2

3α
(1 − α(uL − ū))

3
2 . (12)

Where ∗ represents the ”star” region [6] in which u is unknown. The entropy
condition gives u∗ ≥ uL, a condition for determining rarefaction. The speed
of the wave fan is represented by the shock head λH = 1 − √

1 − α(u∗ − ū)

and the shock tail λT = 1 −√
1 − α(uL − ū). If λ1 is a shock wave then the

Rankine Hugoniot condition gives

p∗ = pL +
√

1 − α (¯̄u − ū))(u∗ − uL)

¯̄u = 1
2
(u∗ +uL) and the entropy condition requires u∗ ≤ uL. The shock speed

is then λS = 1 − √
1 − α(¯̄u − ū). By a similar process, for λ3

p∗ =

{
pR + 2

3α
(1 − α(u∗ − ū))

3
2 + 2

3α
(1 − α(uR − ū))

3
2 if u∗ > uR

pR − √
1 − α(¯̄u − ū))(u∗ − uR) if u∗ ≤ uR
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with ¯̄u = 1
2
(u∗ + uR) and{

λH = 1 − √
1 − α(uR − ū), λT = 1 − √

1 − α(u∗ − ū) rarefaction,

λS = 1 − √
1 − α(¯̄u − ū) shock.

u∗ and p∗ are then the solution of the equation formed by the combinations
of waves. Defining

f(u, v) =

{ −(u − v)
√

1 − α(¯̄u − ū) if u < v
2
3α

[
(1 − α(u − ū))

3
2 − (1 − α(v − ū))

3
2

]
if u > v,

(13)

we then have pR −pL + f(u∗, uL)+ f(u∗, uR) = 0, a nonlinear equation in u∗.
This equation can be solved with any of various techniques, but since f(u, v)
is monotone with non zero derivative, Newton’s method is most efficient.
So the complete solution to the Riemann Problem is a combination of the
following:

1. for λ1

(a) shock λS = 1 − √
1 − α(¯̄u − ū) — u∗ ≤ uL

u(x, t) =

{
(uL, wL, pL)T if x

t
≤ λS

(u∗, wL, p∗)T if λS ≤ x
t
≤ λ2

(b) rarefaction—u∗ ≥ uL

u(x, t) =




(uL, wL, pL)T if x
t
≤ λT

(ufan, wL, pfan)T if λT ≤ x
t
≤ λH

(u∗, wL, p∗)T if λH ≤ x
t
≤ λ2
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where λH = 1 − √
1 − α(u∗ − ū) and λT = 1 − √

1 − α(uL − ū),
and

ufan = ū +
1

α

[
1 −

(
1 − x

t

)2
]

and pfan = pL − f(ufan, ul)

2. for λ3

(a) shock with speed λS = 1 +
√

1 − α(¯̄u − ū)— u∗ ≤ uR

u(x, t) =

{
(u∗, wR, p∗)T if λ2 ≤ x

t
≤ λS

(uR, wR, pR)T if λS ≤ x
t

(b) rarefaction—u∗ ≥ uR

u(x, t) =




(u∗, wR, p∗)T if λ2 ≤ x
t
≤ λT

(ufan, wR, pfan)T if λT ≤ x
t
≤ λH

(uR, wr, pR)T if λH ≤ x
t

λH = 1 +
√

1 − α(uR − ū) and λT = 1 +
√

1 − α(u∗ − ū) and

ufan = ū +
1

α

[
1 −

(x

t
− 1

)2
]

, pfan = pL − f(ufan, ul).
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The Godonov flux is evaluated at x = 0 so only the first part of the
solution applies, i.e..

u(0) =




(uL, wL, pL)T if 0 ≤ λS

(u∗, wL, p∗)T if λS ≤ 0 ≤ λ2

}
if u∗ ≤ uL

(uL, wL, pL)T if 0 ≤ λT

(uFan, wL, pFan)
T if λT ≤ 0 ≤ λH

(u∗, wL, p∗)T if λH ≤ 0


 if u∗ ≥ uL

For scheme (9) applied to ivp (6) we have the iterative procedure

un+1
i,k = u∗

i,k +
∆t

∆x

[
F∗

i− 1
2
,k
− F∗

i+ 1
2
,k

]
, (14)

for i = 2, 3, . . . , I − 1 and k = 2, 3, . . . , K − 1, where the initial data states
for the local Riemann Problem RP(i, i + 1) are u∗

i,k and u∗
i+1,k.

The Godonov scheme is stable if Sn
max

∆t
∆x

≤ 1. This requires that the
wave speeds be predetermined or that ∆t be determined at each iteration.
We chose the former approach with a conservative estimate ∆t = 0.001.

4 Boundary Conditions

To implement the boundary conditions an aerofoil is placed on the x axis
of a finite flow domain [−1, 2] × [−1, 1]. The aerofoil shape is analytically
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continued onto the x axis and represented as a boundary of infinitesimal
width for x ∈ [0, 1]. The flow domain is split into two blocks an upper block
with wing surface z = h+(x) and a lower block with wing surface z = h−(x).
On each block is placed a uniform grid with horizontal and vertical increments
of ∆x and ∆z. The vertical grid lines are placed such that the singularity
at the leading and trailing edges lie on the midpoint of two lines. The wing
surface lies on the midpoint of horizontal grid lines k = 1 and k = 2, where
k = 1 is a dummy grid level introduced to facilitate implementation of the
boundary conditions and k = 2 corresponds to z = ∆z

2
for the upper block.

The lower block is the mirror image of the upper block.

Applying a second order differencing to the z derivative and averaging w
across k = 1 and k = 2, the flow tangency conditions become

w±
i,1 = 2h±

x − w±
i,2, u±

i,1 = u±
i,2 ∓ ∆zh±

xx and p±i,1 = p±i,2 ∓ ∆zh±
xx

where the superscripts + and − represent the upper and lower blocks. On
the wake and diaphragm the zero jump conditions lead to

w±
i,1 = w∓

i,2, u±
i,1 = u∓

i,2 and p±i,1 = p∓i,2

where in all cases i = 1, 2, . . . , I. For streamwise and far vertical boundaries,
the non-reflective conditions become

u±
1,k = p±1,k = u±

I,k = p±I,k = 0, w±
1,k = w±

2,k, w
±
I,k = w±

I−1,k,

and w±
i,K = 0, u±

i,K = u±
i,K−1 and p±i,K = p±i,K−1.

Where a first order one sided difference was applied to derivative conditions.
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Table 1: This table summarises the configuration of each test cases.
test No aerofoil shape M ∆x ∆z

1 parabolic arc 10% thick 0.5 0.033 0.033
2 flat plate θ = tan−1(−.1) 0.3 0.033 0.033
3 flat plate θ = tan−1(−.1) 0.5 0.033 0.033
4 NACA 0012 0.3 0.033 0.01
5 NACA 0012 0.82 0.02 0.01

5 Numerical Results

In this section we present the results of applying schemes (11) and (14) succes-
sively with the boundary conditions in Section 4 and γ = 1.4 to test configura-
tions summarised in Table 1. In test case 1, a symmetric aerofoil of parabolic
arc of 10% thickness, described by h±(x) = ±0.2x(1 − x), is immersed in a
flow field with free stream Mach number M = 0.5. The grid spacing was
chosen to be 0.033 in both directions a balance between accuracy and com-
putational efficiency. The flow is characterised by symmetry about the x axis
and the line x = 0.5 and an analytic expression for pressure coefficient Cp on
the wing surface is given by Cp = (2+(−1+2x) ln(−1+1/x))/(5π

√
1 − M2).

This is obtained using a linear approximation of the tsd equation. For small
M , the linear theory and nonlinear theory should give similar results. In
Figure 1 the negative pressure coefficient −Cp obtained by the numerical
scheme, represented by the dots, is compared to the analytic solution (un-
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0.25 0.5 0.75 1

-0.2

-0.1

0.1

0.2

0.3

Figure 1: Negative of Pressure coefficient on upper surface of symmetric
10% thick parabolic aerofoil at M = 0.5.

broken line). The approximation of subsonic flow by the tsd equation results
in skewness in the solution. This may be attributable to the nonlinearity in
the tsd equation. In test case 2, we have an antisymmetric flow over a flat
plate inclined at an angle θ such that tan θ = −0.1 and free stream Mach
number of 0.3. The wing surface is represented by h±(x) = −0.1(x − 0.5).
Again the grid spacing was chosen to be 0.033 in both directions. In test
case 3, the flat plate of test 2 is placed in a flow field with M = 0.5 and the
grid configuration is unaltered. Figures 2(a) and 2(b) show the result of test
cases 2 and 3 compared with an analytic expression for −Cp found using a
linear approximation of the tsd equation. For test 2 the approximation is
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1
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0 0.25 0.5 0.75 1

1

2

3

4

(a) (b)

Figure 2: Negative of pressure coefficient on the upper surface of flat plate
inclined at tan θ = −0.1 for M = 0.3 in (a) and M = 0.5 in (b).

worst near the leading edge but gave accurate solution elsewhere. In Fig-
ure 3 we see a good agreement between the analytic and numerical solutions.
The tsd equation was formulated with the assumption that M be close to 1,
we have used it to approximate subsonic flow where M is small. Therefore
it should be expected that as M increases then the approximation becomes
more accurate.

Figure 3(a) compares, for test 4, numerical results obtained by different
numerical methods, dots for our scheme and unbroken line for the spectral
method. In test case 4, we have the more practical NACA 0012 aerofoil
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with M = 0.3 and grid spacing of 0.033 in the x direction and 0.01 in the
z direction. Again the greatest error lies near the singularity at the leading
edge, where for better approximation requires a finer meshing in both x and
z directions. In test case 5, the NACA 0012 aerofoil is subjected to free
stream flow of M = 0.82. At this Mach number a shock develops and for
better resolution of the shock the x increment was reduced to 0.02 and the z
increment to 0.01. The results of test 5 are summarised in Figure 3(b), where
the spectral method is represented by the unbroken line and our scheme by
dots. In terms of shock resolution our scheme is better as a spectral method
gives an overshoot in the shock. In both schemes the shock is resolved within
3 grid points. In all cases except test 5 the solution was presented at the
end of 5000 iterations. This is excessively inefficient in terms of computation
time, but may be explained by the very conservative choice for ∆t = 0.001
and that the Godonov and fvs methods are explicit first order. In test 5 the
plotted solution was after 10000 iterations, this is due to the smaller ∆x and
∆z.

6 Conclusion

The nonlinear tsd equation was reformulated in hyperbolic conservation
law form and with the aid of dimensional splitting, is solved using the one
dimensional finite volume methods of Godonov and flux vector splitting.
While the solution for steady subsonic flow is accurate in general, there are
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0 0.25 0.5 0.75 1
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-0.4

-0.2

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 3: Negative of pressure coefficient on the upper surface of flat plate
inclined at tan θ = −0.1 for M = 0.3 in (a) and M = 0.5 in (b).
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inaccuracies near the leading edge. This can be partially rectified by refining
the mesh but in terms of computational efficiency, this is not a viable option.
Nevertheless, more importantly, the success or failure of a numerical scheme
applied to the tsd equation depends on the quality of the solution around
shocks. In this regard, our scheme appears to be successful. Still the scheme
requires much improvements. We propose in future work to apply the method
of time step cycling to enhance the rate of convergence.
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