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Abstract

We propose a novel stabilised mixed finite element method for the
discretisation of thin plate splines. The mixed formulation is obtained
by introducing the gradient of the smoother as an additional unknown.
Working with a pair of bases for the gradient of the smoother and the
Lagrange multiplier, which forms a biorthogonal system, we eliminate
these two variables (gradient of the smoother and Lagrange multiplier)
leading to a positive definite formulation. We prove a sub-optimal
a priori error estimate for the proposed finite element scheme.
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1 Introduction

We propose a new finite element approach for the discretisation of the thin
plate spline [7, 16], which is one of the most popular approaches in scattered
data fitting. Scattered data fitting problems occur in many applications
such as data mining, reconstruction of geometric models, image processing,
parameter estimation and optic flow [1, 8, 17].

Let Ω ⊂ Rd with d ∈ {2, 3} be a closed and bounded region with polygonal or
polyhedral boundary. We use standard notation for the norm and semi-norm
of Sobolev spaces [4]. Given a set G = {xi}Ni=1 of scattered points in Ω, and
a function r on G with zi = r(xi) for i = 1, . . . ,N , the thin plate spline is a
smooth function u ∈ H2(Ω) [7, 16] such that

u = argmin
u∈H2(Ω)

 N∑
i=1

[u(xi) − zi]2 + α
∫
Ω

∑
|ν|=2

(
2

ν

)
(Dνu)2 dx

 , (1)

where ν = (ν1, . . . ,νd) ∈ Nd0 is a multi-index, |ν| =
∑d

i=1 νi , and α is a
positive constant. Note that H1(Ω) = {u ∈ L2(Ω) ,∇u ∈ [L2(Ω)]d} , and
H2(Ω) = {u ∈ H1(Ω) ,∇u ∈ [H1(Ω)]d} . A conventional approach is to
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use radial basis functions to approximate the space H2(Ω) in (1), which
leads to a dense system matrix. The solution of such a system is very
expensive when a large data set has to be modelled. In this article we
propose an efficient discretisation technique for the minimisation of the
functional (1). The basic idea of a finite element method is to replace the
continuous space H2(Ω) by a discrete one. To discretise the minimisation
problem using a conforming approach, we need to construct a discrete finite
element space which is a subset of the Sobolev space H2(Ω). Construction
of such a finite element space is expensive and difficult [6, 4]. The class
of standard non-conforming finite elements [6, 4] provides a more efficient
discretisation than the conforming approach. However, their implementation
requires a complicated data structure, and a suitably constructed mixed
formulation provides a more efficient and flexible discretisation than the non-
conforming approach. Here we follow an approach used previously [9, 5, 12]
to modify the original minimisation problem (1) so that the minimisation is
done over the Sobolev space H1(Ω) rather than over the Sobolev space H2(Ω).
We also aim for an efficient mixed finite element discretisation.

The rest of the article is organised as follows. In the remainder of this section,
we fix some notation and introduce an alternative equivalent variational
problem. Section 2 introduces a finite element solution of the problem. We
recast the problem as a saddle point problem. The algebraic system motivates
the usage of a pair of finite element bases (for the gradient of the smoother
and the Lagrange multiplier) which forms a biorthogonal system. Section 3
is devoted to the analysis of the discrete problem. Eliminating the gradient
and the Lagrange multiplier, we get a positive definite formulation of the
saddle point problem for which we prove the existence of a unique solution.
The final part of Section 3 shows the (sub-optimal) convergence of our finite
element solution to the continuous solution.

Let the Sobolev space H1(Ω) × [H1(Ω)]d be denoted by V, and for two
matrix-valued functions α : Ω→ Rd×d and β : Ω→ Rd×d , the Sobolev inner
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product is

(α,β)Hk(Ω) :=

d∑
i=1

d∑
j=1

(αij,βij)Hk(Ω) ,

where (α)ij = αij and (β)ij = βij with αij,βij ∈ Hk(Ω) . The Sobolev norm
‖ · ‖Hk(Ω) is induced from Sobolev inner product. For k = 0 , an equivalent
notation,

(α,β)L2(Ω) :=

d∑
i=1

d∑
j=1

∫
Ω

αijβij dx =

∫
Ω

α : βdx ,

for the L2-inner product is used and the L2-norm ‖ · ‖L2(Ω) is induced by this
inner product. We note that α : β =

∑d
i=1

∑d
j=1 αijβij .

A new formulation of the minimisation problem (1) is obtained by introducing
an auxiliary variable σ = ∇u [9, 5],

[u,σ] = argmin
(v,τ)∈V
τ=∇v

(
N∑
i=1

[v(xi) − zi]2 + α‖∇τ‖2L2(Ω)

)
. (2)

A finite element or discrete formulation is obtained by replacing the infinite
dimensional space V by a finite dimensional space Vh ⊂ V (also called a
finite element space). The space Vh should be chosen carefully to guarantee
convergence and efficiency of the approach.

2 Finite element problem

Let Th be a quasi-uniform partition of the domain Ω in triangles or tetrahedra
with mesh-size h. Let T̂ be a reference triangle defined as

T̂ := {(x,y) : 0 < x , 0 < y , x+ y < 1} ,
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or a reference tetrahedron defined as

T̂ := {(x,y, z) : 0 < x , 0 < y , 0 < z , x+ y+ z < 1} .

First, we define linear and quadratic finite element spaces:

Lh :=
{
vh ∈ H1(Ω) : vh|T ∈ P1(T) , T ∈ Th

}
, (3)

and
Qh :=

{
vh ∈ H1(Ω) : vh|T ∈ P2(T) , T ∈ Th

}
, (4)

where Pn(T) is the polynomial space of degree n ∈ N in T [6, 4].

To obtain the discrete form of the minimisation problem (2), we introduce
a finite element space Vh ⊂ V defined as Vh = Qh × [Lh]

d , and a piecewise
polynomial space Mh ⊂ L2(Ω) based on Th satisfying dimMh = dimLh. We
assume the following.

Assumption 1. There is a constant β > 0 independent of the triangulation Th
such that

‖φh‖L2(Ω) 6 β sup
µh∈Mh\{0}

∫
Ω
µhφh dx
‖µh‖L2(Ω)

, φh ∈ Lh . (5)

Assumption 2. The space Mh has the approximation property:

inf
λh∈Mh

‖φ− λh‖L2(Ω) 6 Ch|φ|H1(Ω) , φ ∈ H1(Ω) . (6)

As an example, Mh = Lh ⊂ H1(Ω) .

We utilise the greater flexibility of Mh ⊂ L2(Ω) to obtain an efficient finite
element scheme. We replace the space V in (2) by our discrete space Vh, to
get our discrete problem:
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Problem 3. Determine (uh,σh) ∈ Vh to satisfy

argmin
(uh,σh)∈Vh

(
N∑
i=1

[uh(xi) − zi]2 + α‖∇σh‖2L2(Ω)

)
, (7)

subject to
〈σh,τh〉L2(Ω) = 〈∇uh,τh〉L2(Ω) , τh ∈ [Mh]

d . (8)

Replacing the constraint (8) by

〈∇uh,∇vh〉L2(Ω) = 〈σh,∇vh〉L2(Ω) , vh ∈ Lh ,

we obtain the finite element thin plate spline presented by Roberts et al. [14],
which has two drawbacks. The first is the difficult to solve saddle point
structure of the system matrix arising from the discretisation. The second
drawback is that it does not necessarily converge to the continuous solution
of (1), although it has similar smoothing properties to the standard thin plate
spline [14]. A new finite element approach was presented by Lamichhane et
al. [13] to discretise the thin plate spline using bubble functions, but there
is no convergence proof of this approach. In contrast, we do not use bubble
functions but use a stabilised formulation leading to a true approximation of
the standard thin plate spline, which converges to the exact solution of (1)
when the mesh-size approaches zero.

Here our interest is to eliminate the degrees of freedom corresponding to
σh and φh and arrive at a formulation only depending on uh. This dramati-
cally reduces the size of the system matrix, and reduces it to a positive definite
matrix. It is well-known that efficient numerical techniques are available to
solve the positive definite system.

We start with eliminating the gradient of the smoother σh from Problem 3
and recast it as an unconstrained optimisation problem. To this end, we
introduce a projection operator Rh : L2(Ω)→ Lh , which is defined as∫

Ω

Rhvµh dx =

∫
Ω

vµh dx, v ∈ L2(Ω) , µh ∈Mh .
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The definition of Rh allows us to write the weak gradient as

σh = Rh∇uh ,

where the operator Rh is applied to the vector ∇uh componentwise. We see
that Rh is well-defined due to Assumption 1. Furthermore, the restriction
of Rh to Lh is the identity. Hence Rh is a projection onto the space Lh.
We note that Rh is not the orthogonal projection onto Lh but an oblique
projection onto Lh [15]. The operator Rh is used extensively in the context of
mortar finite elements [2, 11]. Utilising Rh and denoting the vector of function
values of u ∈ C0(Ω) at the measurement points x1,x2, . . . ,xN by Pu ∈ RN ,

Pu = (u(x1),u(x2), . . . ,u(xN))T ,

the minimisation Problem 3 is

uh = argmin
vh∈Qh

(
‖Pvh‖2 + α‖∇(Rh∇vh)‖2L2(Ω) − 2(Pvh)

Tz
)
, (9)

where z ∈ RN . The main difficulty of this approach is that the operator Rh
is not a coercive operator in the L2-norm. There exists a function vh ∈ Qh
with ‖∇vh‖L2(Ω) > 0 such that Rh(∇vh) = 0 . Hence the problem is not
uniquely solvable. To gain the coercivity we add a stabilisation term in the
minimisation problem (9) so that our stabilised problem is to find uh which
satisfies

Jα(uh) = min
vh∈Qh

Jα(vh) , (10)

where

Jα(vh) = ‖Pvh‖2 + α‖∇(Rh∇vh)‖2L2(Ω) + ‖Rh∇vh −∇vh‖
2
L2(Ω) − 2(Pvh)

Tz .

To show that this problem has a unique solution, we define a P-inner prod-
uct 〈 · , · 〉P with

〈uh, vh〉P = (Puh)
TPvh+α

∫
Ω

∇σh : ∇τh dx+

∫
Ω

(σh−∇uh) · (τh−∇vh)dx ,
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where σh = Rh∇uh and τh = Rh∇vh . It follows that

Jα(vh) = 〈vh, vh〉P − 2(Pvh)Tz .

The following theorem shows that the P-inner product defines an inner product
on the vector space Qh.

Theorem 4. Let α > 0 and G ⊂ Ω̄ have at least three non-collinear points
for d = 2 and and four non-coplanar points for d = 3 , then the P-inner
product defined above is an inner product on the vector space Qh.

Proof: In order to show that the P-inner product is indeed an inner product,
we have to prove the following properties of P-inner product:

• 〈vh, vh〉P > 0 and 〈vh, vh〉P = 0 if and only if vh = 0 and vh ∈ Lh ;

• 〈vh +wh, zh〉P = 〈vh, zh〉P + 〈wh, zh〉P for vh,wh, zh ∈ Lh ;

• 〈vh,bzh〉P = b〈vh, zh〉P for vh ∈ Lh,b ∈ R ;

• 〈vh,wh〉P = 〈wh, vh〉P for vh,wh ∈ Lh .

It is trivial to show that the P-inner product satisfies the second, third and
fourth properties. It is also obvious that 〈vh, vh〉P > 0 , and 〈vh, vh〉P = 0 if
vh = 0 . It remains to be shown that 〈vh, vh〉P = 0 implies vh = 0 .

We have 〈vh, vh〉P = ‖Pvh‖2 + α‖∇τh‖2L2(Ω)
+ ‖τh − ∇vh‖L2(Ω) with τh =

Rh∇vh . Let 〈vh, vh〉P = 0 , then ‖Pvh‖2 = 0 , ‖∇τh‖2L2(Ω)
= 0 and ‖τh −

∇vh‖L2(Ω) = 0 , as they are all positive. Since τh is continuous, ‖∇τh‖L2(Ω) =
0 if and only if τh is a constant vector function in Ω. Similarly, ‖τh −
∇vh‖L2(Ω) = 0 implies that ∇vh is also constant in Ω, and thus vh is a global
linear function in Ω. On the other hand, ‖Pvh‖ = 0 implies that vh is zero on
G ⊂ Ω̄ , which contains at least three non-collinear points for d = 2 or four
non-coplanar points for d = 3 . Hence vh is a global linear function which is
zero at three non-collinear points for d = 2 or four non-coplanar points for
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d = 3 , and therefore, identically vanishes in Ω. ♠

The P-norm of an element uh ∈ Qh induced by the inner product 〈 · , · 〉P is
‖uh‖2P = ‖Puh‖2+α‖∇Rh∇uh‖2L2(Ω)

+‖Rh∇uh−∇uh‖2L2(Ω)
. Since the inner

product 〈 · , · 〉P is symmetric, the minimisation problem (10) is equivalent to
the variational problem of finding uh ∈ Qh such that

〈uh, vh〉P = f(vh) , vh ∈ Qh . (11)

As the inner product 〈 · , · 〉P defines a symmetric, continuous and positive-
definite bilinear form (from Theorem 4), and the linear form f( · ) is continuous
with respect to the norm ‖ · ‖P, a unique solution exists.

Corollary 5. Under the assumptions of Theorem 4, the variational prob-
lem (11) admits a unique solution which depends continuously on the data.

The corollary follows from the fact that the resulting linear system has a
positive-definite matrix.
Remark 6. Using the unique solution uh of the variational problem (11), we
have a unique solution (uh,σh) of Problem 3 with σh = Rh∇uh .

We now look closely at the algebraic form of the equation σh = Rh∇uh .
Using the same notation for the finite element functions, σh ∈ [Lh]

d and
uh ∈ Qh, and for their vector representation, we write

Dσh − Buh = 0 ,

where D is the Gram matrix corresponding to the bilinear form (σh,ψh) and
B is the matrix corresponding to the bilinear form (∇uh,ψh) . The static
condensation of the degree of freedom associated with σh and φh is extremely
easy if D is a diagonal invertible matrix. We aim to achieve this.

Let {ϕ1, . . . ,ϕn} be the standard nodal finite element basis of Lh. We define
a space Mh spanned by the basis {µ1, . . . ,µn} , where the basis functions of Lh
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and Mh satisfy a biorthogonality condition,∫
Ω

µi ϕj dx = cjδij , cj 6= 0 , 1 6 i , j 6 n . (12)

Here, n := dimMh = dimLh , δij is the Kronecker delta, and cj a positive
scaling factor. The scaling factor cj is chosen to be proportional to the
area | suppϕj| .

For the reference triangle T̂ := {(x,y) : 0 < x, 0 < y, x + y < 1} , the basis
functions for linear finite elements in two dimensions are

µ̂1 := 3− 4x− 4y , µ̂2 := 4x− 1 , µ̂3 := 4y− 1 .

The basis functions µ̂1, µ̂2 and µ̂3 are associated with the three vertices of
the reference triangle, (0, 0) , (1, 0) and (0, 1) . For the reference tetrahedron
T̂ := {(x,y, z) : 0 < x , 0 < y , 0 < z , x + y + z < 1} , the basis functions for
linear finite elements in two dimensions are

µ̂1 := 4− 5x− 5y− 5z , µ̂2 := 5x− 1 , µ̂3 := 5y− 1 , µ̂4 := 5z− 1 .

The basis functions µ̂1, µ̂2, µ̂3 and µ̂4 are associated with the four vertices of
the reference tetrahedron, (0, 0, 0) , (1, 0, 0) , (0, 1, 0) and (0, 0, 1) .

The global basis functions for the test space are constructed by glueing the
local basis functions together, and thus the assembling process is exactly the
same as in the standard finite element method. These global basis functions
then satisfy the condition of biorthogonality (12) with global finite element
basis functions, and they satisfy Assumptions 1 and 2. As these functions
in Mh are defined in exactly the same way as the finite element basis functions
in Lh, they satisfy suppµi = suppϕi for i = 1, . . . ,n .

3 An a priori error estimate

In this section we focus on analysing the a priori error estimate. According to
the biorthogonality relation (12) between the basis functions of Lh and Mh,
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the action of operator Rh on a function v ∈ L2(Ω) is

Rhv =

n∑
i=1

∫
Ω
µiv dx

ci
ϕi . (13)

Consequently, the operator Rh is local in the sense described below. Let S(T ′)
be the patch of an element T ′ ∈ Th which is the interior of the closed set

S̄(T ′) =
⋃

{T ∈ Th : ∂T ∩ ∂T ′ 6= ∅} . (14)

Then Rh is local in the sense that for any v ∈ L2(Ω) , the value of Rhv at
any point in T ∈ Th only depends on the values of v in S(T). We list the
main properties of the oblique projection operator Rh in the following lemma.
This lemma was proved by Kim et al. [10] and Lamichhane [11], where Rh is
introduced as the mortar projection operator.

Lemma 7. Under Assumptions 1 and 2 there exist constants C1, C2, C3 and C4,
independent of mesh-size h, such that:

• Stability in L2-norm,

‖Rhv‖L2(Ω) 6 C1‖v‖L2(Ω) , v ∈ L2(Ω) ; (15)

• Stability in H1-norm,

|Rhv|H1(Ω) 6 C2|v|H1(Ω) , v ∈ H1(Ω) ; (16)

• Approximation property, If v ∈ Hs+1(Ω) with 0 6 s 6 1 ,

‖v− Rhv‖L2(Ω) 6 C3h
1+s|v|Hs+1(Ω) ,

‖v− Rhv‖H1(Ω) 6 C4h
s|v|Hs+1(Ω) . (17)

In the following, we use a generic constant C, which takes different values at
different places but is always independent of the mesh-size h. To analyse the
error estimate we introduce the energy norm

‖(u,σ)‖A :=
√
‖Pu‖2 + α|σ|2

H1(Ω)
+ ‖σ−∇u‖2

L2(Ω)
, (18)
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where (u,σ) ∈ Ṽ×[H1(Ω)]d and Ṽ = C0(Ω)∩H1(Ω) . The following theorem
is important for the a priori error estimate and was proved by Ciarlet [6] and
Lamichhane [12].

Theorem 8. Assume that u is the solution of problem (1) satisfying u ∈
H4(Ω) , σ = ∇u and φ = α∆σ , and uh is the solution of problem (11),
and σh = Rh∇uh . Then there exists a constant C > 0 independent of the
mesh-size h such that

‖(u− uh,σ− σh)‖A 6 C

(
inf

(wh,θh)∈Kh

‖(u−wh,σ− θh)‖A + h|φ|H1(Ω)

)
,

where Kh = {(vh,τh) ∈ Vh|τh = Rh(∇vh)} .

Theorem 9. Under the assumptions of Theorem 8, there exists (vh,τh) ∈ Kh

such that
‖(u− vh,σ− τh)‖A 6 Ch‖u‖H3(Ω) . (19)

Proof: Let vh be the piecewise quadratic Lagrange interpolant of u with
respect to the mesh Th and τh = Rh∇vh . Then it is well-known that

‖u− vh‖Hk(Ω) 6 Ch
2−k|u|H2(Ω) , k = 0, 1 . (20)

Moreover,
‖P(u− vh)‖2 6 Ch2|u|2H2(Ω) . (21)

Using the definition of the error in the energy norm ‖ · ‖A, it is now sufficient
to show that

‖σ− τh‖H1(Ω) 6 h‖u‖H3(Ω) .

Since u ∈ H3(S(T)) ∩H1(Ω) for T ∈ Th [3],

‖∇u− Rh∇vh‖L2(T) 6 Ch2‖u‖H3(S(T)) .

Hence
‖σ− τh‖L2(Ω) 6 Ch

2‖u‖H3(Ω) . (22)
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Now, using a triangle inequality, an inverse estimate and projection property
of Rh,

‖σ− τh‖H1(Ω) 6 ‖σ− Rhσ‖H1(Ω) + ‖Rhσ− Rh∇vh‖H1(Ω)

6 C

(
‖σ− Rhσ‖H1(Ω) +

1

h
‖Rhσ− Rh∇vh‖L2(Ω)

)
6 C

(
‖σ− Rhσ‖H1(Ω) +

1

h
‖σ− Rh∇vh‖L2(Ω)

)
.

The first term on the right has the correct approximation from Lemma 7, and
the second term is from (22). ♠

Using the results of Theorems 8 and 9, we get the following approximation
result for the discrete solution.

Corollary 10. Assume that u is the solution of continuous problem (1) with
u ∈ H4(Ω) , σ = ∇u and φ = α∆σ , and uh is that of discrete problem (11)
with σh = Rh∇uh and Vh = Qh × [Lh]

d . Then there exists a constant C > 0
independent of the mesh-size h such that

‖(u− uh,σ− σh)‖A 6 Ch
(
‖u‖H3(Ω) + |φ|H1(Ω)

)
.

4 Conclusion

We presented a mixed finite element approach to approximate the solution
of the standard thin plate spline in two and three dimensions. This mixed
finite element method introduces two additional unknowns: the gradient of
the smoother and the Lagrange multiplier. Working with a system for the
bases of these two additional unknowns, they can be statically condensed
out of the system, leading to an efficient finite element method for the data
smoothing problem. This is the main advantage of this approach. We also
proved the convergence of this method. However, as in the case of the a priori
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error estimate of a mixed finite element for the biharmonic problem [6], the
convergence to the exact solution is not optimal in the sense that one expects
a quadratic order of convergence using a quadratic finite element space for the
smoother. The advantage of our approach is these two additional unknowns
can be eliminated by inverting a diagonal matrix leading to an efficient
numerical scheme.
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