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An asymptotic analysis for the flow between
deformable rotating rolls
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Abstract

A simple case of the flow between deformable rolls is formulated as
a multi-point boundary non-linear ode’s system. It is quite difficult to
calculate solutions for this problem. Thus, the aim of this analysis is
to find simple and effective solutions to this problem which are impor-
tant for the understanding of the process. In this paper, asymptotic
methods have been applied at the flow inlet where the flux through
the gap is determined.
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1 Introduction

Many industrial processes involve flow between deformable rotating rolls.
Such processes include coating flow and rolling of metal strip. A feature of
this problem is the interaction between the solids and the flow contact with
them.

An effective numerical solution for this problem is given in [3]. It is im-
portant to seek insight about such processes which would not be forthcoming
from complicated analytical expressions or numerical solutions.

In this paper, the basic mathematical formulation for the flow between
deformable rolls is outlined in Section 2. A reduced ode’s system for the flow
through the inlet of the rolls is formulated and some asymptotic solutions are
given in Section 3. A perturbation analysis using Airy functions is carried
out in Section 4. Finally, in Section 5, the asymptotic solutions of Section 3
are used as the leading terms for the construction of more general solutions,
and the Airy function approximations of Section 4 are applied to determine
other terms.

2 Problem formulation

Consider the flow between two deformable rotating rolls as shown in Figure 1.
Questions of interest include the minimum clearance between the two rolls
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Figure 1: Schematic of flow between deformable rotating rolls
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to achieve a given output thickness and the flux of fluid between them.

In the case when the fluid flow is isoviscous, Newtonian and incompress-
ible (see [3]), the flow can be described by the Reynolds equation:

dp

dx
= 12µS

(
h − h∗

h3

)
(1)

where µ is viscosity

S = (S1 + S2)/2 with S1 and S2 are speeds of rolls

h is vertical separation between rolls

h∗ is constant

The vertical separation between rolls depends on the geometry and the elastic
deformation of the rolls. This gives,

h(x) = h0(x) + v(x) (2)

where h0(x)
.
= h0(0) +

x2

2R
(by parabolic approximation)

1/R = 1/R1 + 1/R2 (R1 and R2 are radii of rolls)

and v(x) is the elastic deformation of rolls. From Hertz contact theory,
see [2], v(x) can be evaluated by a singular integral. However, in order to
simplify the problem we assume that the quantity of shear stress is very small
compared to the normal pressure. Then, the problem can be approximated
by the flow between Winkler foundations. From Conway et al [1], we obtain

v(x) =
tp(x)

E∗ (3)
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where p is the pressure, E∗ is the effective Young’s modulus and t is the
thickness of an equivalent Winkler foundation.

By carrying out an analysis similar to that given in [3], we let

p(x) =
∫ x

−∞

(
h − 1

h3

)
dξ (scaled pressure distribution)

z(x) =
∫ x

−∞
ξ

(
h − 1

h3

)
dξ (scaled load distribution)

w(x) =
∫ +∞

−∞
ξ

(
h − 1

h3

)
dξ (scaled total load)

λ :=
12µSt

√
R

E∗(h∗)
5
2

and ε :=
1

λ2

and then scale

x 7→ x

(
12µStR

E∗(h∗)2

)
, h 7→ hh∗

p 7→ pλ , z 7→ zλ , w 7→ wλ

to obtain the following multi-point boundary ode’s system:

ε
dh

dx
= x +

(
h − 1

h3

)
(4)

dp

dx
=

h − 1

h3
(5)
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dz

dx
= x

(
h − 1

h3

)
(6)

dw

dx
= 0 (7)

Subject to boundary conditions

p(±∞) = 0 (8)

z(−∞) = 0 (9)

z(+∞) + w(+∞) = 0 (10)

In practice, the value of ε is always very small (10−9 < ε < 10−4). From equa-
tion (4) we can prove that, on the left hand side of point x = − 4

27
, the vertical

separation h can be approximated by a solution of the differential equation
x = εdh

dx
while at the right hand side of this point h can be approximated by

the implicit function x +
(

h−1
h3

)
= 0. And, both approximations are invalid

as x approaches this point. That gives a turning point at (x, h) = (− 4
27

, 3
2
).

3 Reduced ODE’s system for the inlet prob-

lem

In this section, we derive an ode’s model for the flow, which can be solved us-
ing simple numerical techniques as well as asymptotic analysis. For example,
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the inlet geometry can be examined using a simple numerical method. Then
the asymptotic solutions for the pressure distribution p(x) and the total load
W are obtained in simple forms.

From equations (4) and (5), the pressure distribution p(x) is approxi-
mately symmetric when ε 7→ 0. Hence, we can simplify problem (4–7) by
solving a half of the above rolling system from the inlet side. At the inlet of
the rolls, x < 0. A change the variable x := −x gives positive values for x.
Thus, the ode’s system becomes

ε
dh

dx
= x +

(
1 − h

h3

)
(11)

dp

dx
=

1 − h

h3
(12)

dz

dx
= −x

(
1 − h

h3

)
(13)

The boundary conditions are

p(+∞) = 0 (14)

z(+∞) = 0 (15)

Note that another boundary condition is needed for this problem, and the
turning point is now located at (x, h) = ( 4

27
, 3

2
).
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3.1 A sub-problem for h

Let h̄ denote the asymptotic expansion about h(0). Clearly, h̄ is a function
of ε at x = 0. From (11), we can derive the following perturbed iterative
technique:

hi+1 = 1 − (εhi
′ − x)hi

3

By using this technique with the initial value ho = 1 when ε = 0 and taking
h′

o = O(1), we obtain after three steps the following approximation at x = 0:

h̄(ε) ≈ 1 − ε + 6ε2 − 12ε3

This can be used as the additional boundary condition for the ode’s sys-
tem (11–13). In this way, we have derived a simple initial value problem for
h:

ε
dh

dx
= x +

(
1 − h

h3

)
with h(0) ≈ 1 − ε + 6ε2 − 12ε3 (16)

This problem can be easily solved numerically.

3.2 Pressure distribution (p)

Using (16), equation (12) can be written as:

p(x) =
∫

1 − h

h3
dx =

∫
(εh′ − x)dx by (11).
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Thus,

p(x) = εh − x2

2
+ Pm (17)

where Pm is determined by the boundary condition p(+∞) = 0.

3.3 Asymptotic solution for pressure

In the extreme case, as ε → 0, equations (11) and (12) give p = 0 at x = 4
27

⇒ P̄m − 1

2
(

4

27
)2 = 0 as ε → 0

⇒ P̄m =
8

729

The asymptotic value of the maximum pressure:

P̄m =
8

729
as ε → 0

Thus, the asymptotic solution of pressure (as ε → 0):

p̄(x) =

{
8

729
− x2

2
, − 4

27
≤ x ≤ 4

27

0 , otherwise
(18)
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3.4 Load distribution (z)

Similarly, equation (13) gives

z(x) = −
∫ +∞

x
ξ
1 − h

h3
dξ

= −
∫ +∞

0
ξ
1 − h

h3
dξ +

∫ x

0
ξ
1 − h

h3
dξ

= zo +
∫ x

0
ξ
1 − h

h3
dξ by setting zo = −

∫ +∞

0
ξ
1 − h

h3
dξ

= zo + x
∫ x

0

1 − h

h3
dξ −

∫ x

0

∫ ξ

0

1 − h

h3
dξdη via integration by parts.

Therefore,

z(x) = zo + x(εh + Pm − x2

2
) −

∫ x

0
(εh + Pm − x2

2
)dξ

= zo + xεh + xPm − x3

2
− ε

∫ x

0
hdξ − xPm +

x3

6

= zo − x3

3
+ ε(xh −

∫ x

0
hdξ)

Thus,

z(x) = zo − x3

3
+ ε

(
xh −

∫ x

0
hdξ

)
(19)

where zo = − ∫ +∞
0 ξ 1−h

h3 dξ .
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3.5 Asymptotic solution for z and total load (w)

As ε → 0:

z̄o =
∫ 4

27

0
p̄(x)dx =

26

310

Hence, the asymptotic solution of z is:

z̄(x) =




0 , x < − 4
27

26

310 + x3

3
, − 4

27
≤ x ≤ 4

27
27

310 , x > 4
27

(20)

Recall that the pressure distribution for the full problem is asymptotically
symmetric. Thus, the asymptotic value of the total load:

w̄ =
27

310
as ε → 0 by w̄ = 2

∫ 4
27

0 p̄(x)dx (21)

4 Perturbation analysis using Airy functions

In this section, we outline a simple Airy functions model for the inlet geom-
etry (h) and compare this result with the numerical solution of the second
order Taylor expansion for h. We also carried out a higher order approxima-
tion for h based on the Airy functions.
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It is also noted that we now restore the sign of variable x as in the full
ode’s system (4–7). Let F (h) = 4

27
+h−3−h−2. Equation (4) can be written

as εdh
dx

= x + 4
27

− F (h) Taylor expansion of F (h) about h = 3
2

gives:

F (h) ≈ 16

81
(h − 3

2
)2 − 256

729
(h − 3

2
)3 +

320

729
(h − 3

2
)4 − 1024

2187
(h − 3

2
)5 · · ·

Note that F = F ′ = 0 at h = 3
2
.

At the turning point, let X = x + 4
27

and H = h − 3
2
, we obtain

ε
dH

dX
≈ X − 16

81
H2 +

256

729
H3 − 320

729
H4 +

1024

2187
H5

Now, scale

X → X
(

9

4
ε
) 2

3

(22)

H → Hε
1
3

(
9

4

) 4
3

(23)

ε → ε
(

4

9

)
(24)

⇒ dH

dX
≈ X − H2 + 4εH3 − 45

4
ε

4
3 H4 + 27ε

5
3 H5 (25)
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4.1 A simple Airy functions model

Taking the first two terms of the above expansion, we have

H ′ = X − H2

Let H = Y ′
Y

. Hence H2 = (Y ′)2/Y 2, and

H ′ =
Y ′′

Y
− (Y ′)2

Y 2

H ′ = X − H2

= X − (Y ′)2

Y 2

⇒ Y ′′ = XY

The general solution is

Y (X) = C0Ai(X) + C1Bi(X)

where

Ai(X) =
(

1

3
2
3 π

) ∞∑
k=0

Γ(k+1
3

) sin(2π
3

(k + 1))

k!
(3

1
3 X)k

Bi(X) = e
iπ
6 Ai(Xe

2iπ
3 ) + e−

iπ
6 Ai(Xe−

2iπ
3 )

⇒
H =

C0A
′
i(X) + C1B

′
i(X)

C0Ai(X) + C1Bi(X)
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Now, the asymptotic solution as X → +∞:

Ai(X) ≈ 1

2

exp(−2
3
X

3
2 )

X
1
4
√

π

Bi(X) ≈ exp(2
3
X

3
2 )

X
1
4
√

π

A′
i(X) ≈ −1

2

exp(−2
3
X

3
2 )X

1
4√

π

B′
i(X) ≈ exp(2

3
X

3
2 )X

1
4√

π

If C1 6= 0 (and for any values of C0):

H → limX→+∞ B′
i(X)

limX→+∞ Bi(X)
=

√
X as X → +∞

Otherwise, C1 = 0. This requires C0 6= 0, we obtain

H =
A′

i(X)

Ai(X)
→ −

√
X as X → +∞

Let

Sin = {(X, H) : H ′ > 0}
Sout = {(X, H) : H ′ < 0}
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Since the outer solution (X, H) ∈ Sout (H is decreasing)

⇒ H∞ = −
√

X is the stable branch for H

Thus, the simple model for the inlet geometry is:

H =
A′

i(X)

Ai(X)
(26)

A graphical comparison of the models is given in Figure 2 where the
following colour codes have been used:

• red curve is the plot of h corresponding to the simple Airy functions
model;

• green dotted curve is the plot of h corresponding to the second order
of Taylor expansion model;

• blue dashed curve is the result corresponding to the numerical solution
for the sub-problem (16); and

• cyan curve is the result corresponding to the outer solution of equa-
tion (16).
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Figure 2: The inlet geometry of the models
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4.2 Approximation using Airy functions

Now, assume
H = H1 + εH2 + ε

4
3 H3 + ε

5
3 H4

⇒ dH

dX
=

dH1

dX
+ ε

dH2

dX
+ ε

4
3
dH3

dX
+ ε

5
3
dH4

dX

From (25), we can write

dH

dX
≈ X −

(
H1 + εH2 + ε

4
3 H3 + ε

5
3 H4

)2

+ 4ε
(
H1 + εH2 + ε

4
3 H3 + ε

5
3 H4

)3

− 45

4
ε

4
3

(
H1 + εH2 + ε

4
3 H3 + ε

5
3 H4

)4

+ 27ε
5
3

(
H1 + εH2 + ε

4
3 H3 + ε

5
3 H4

)5

≈ X − H2
1 + ε

(
4H3

1 − 2H1H2

)
− ε

4
3

(
45

4
H4

1 + 2H1H3

)

+ ε
5
3

(
27H5

1 − 2H1H4

)
− ε2 (· · ·) · · ·

Thus,

dH1

dX
≈ X − H2

1

dH2

dX
≈ 4H3

1 − 2H1H2
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dH3

dX
≈ −45

4
H4

1 − 2H1H3

dH4

dX
≈ 27H5

1 − 2H1H4

Similarly, we find the asymptotic solutions for H1, H2, H3 and H4 to use as
the boundary conditions for the above ode’s system. The iterative technique
gives:

H1(X) → −X
1
2 as X → ∞

H2(X) → 2X as X → ∞
H3(X) → 45

8
X

3
2 +

135

16
as X → ∞

H4(X) → 27

2
X2 + 27X

1
2 as X → ∞

Therefore, theoretical solutions of H1, H2, H3 and H4 can be written in terms
of simple Airy functions:

H1(X) ≈ A′
i(X)

Ai(X)
(27)

H2(X) ≈ 4

A2
i (X)

∫ X

∞
(A′

i(ξ))
3

Ai(ξ)
dξ (28)

H3(X) ≈ 45

4A2
i (ξ)

dξ
∫ X

∞
(A′

i(ξ))
4

A2
i (X)

(29)

H4(X) ≈ 27

A2
i (X)

∫ X

∞
(A′

i(ξ))
5

A3
i (ξ)

dξ (30)
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Finally, the geometry for the inlet can be approximated by the following
asymptotic expansion:

H(X) ≈ H1(X) + εH2(X) + ε
4
3 H3(X) + ε

5
3 H4(X) (31)

5 Asymptotic analysis

In this section, simple solutions for this problem are derived and the approx-
imate results for the total load are obtained.

By using the above Airy functions approximation, asymptotic expansions
at the neighbourhood of the turning point for x, h and p are given by:

x ≈ 4

27
+ x1ε

2
3 + · · · (32)

h ≈ 3

2
+ h1ε

1
3 + · · · (33)

p ≈ p1ε
2
3 + p2ε + · · · (34)
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5.1 Asymptotic expansion of p(0)

From (18) and (34), the first three terms of the asymptotic expansion for
p(0) are expected to be:

p(0, ε) ≈ 8

729
+ Aε

2
3 + Bε + o(ε) (35)

where A and B are unknown constants. Further work is required to obtain
the theoretical solution for these constants. Here, we use the least squares
method to fit numerical solutions of this problem to obtain: A ≈ 0.631361
and B ≈ 1.85549 .

5.2 Asymptotic expansions of pressure and total load

Pressure at:

p(x, ε) ≈
{

p(0, ε) − x2

2
, −

√
2p(0, ε) ≤ x ≤

√
2p(0, ε)

o(ε) , otherwise
(36)

Total load:

w(ε) ≈ 2
∫ √

2p(0,ε)

0
(p(0, ε) − x2

2
)dx

Therefore,

w(ε) ≈ 2

3
(2p(0, ε))

3
2 (37)
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5.3 Results

The results in Table 1 show that our simple approximate solutions are very
well fit with the numerical solutions for small values of ε. However, in the
case of large ε, we need to add higher order terms for ε into the expansion (35)
to improve the accuracy for this approximation.

References

[1] H. D. Conway and P. A. Engel. The elastohydrodynamic lubrication of
a thin layer. Journal of Lubrication Technology, Trans. ASME, 95:
381–385, 1973. C801

[2] D. Dowson, G. R. Higginson, J. F. Archard, and A. W. Crook.
Elasto-hydrodynamic Lubrication. Pergamon Press, 1991. C801

[3] H. N. Huynh and F. R. de Hoog. Numerical solution of
elastohydrodynamic lubrication equations. In D. Steward, D. Singleton,
and H. Gardner, editors, Computational Techniques and Applications:
CTAC93, pages 94–102, Singapore, 1994. World Scientific. C799, C801,
C802



References C819

Table 1: Some results for total load w(ε)
λ ε Numerical Approximate Relative

Solution Solution Error
25 3.51166E-05 2.39371E-03 2.39128E-03 1.01596E-03
50 8.77915E-06 2.25338E-03 2.25267E-03 3.11017E-04
75 3.90184E-06 2.21651E-03 2.21638E-03 5.62072E-05
100 2.19479E-06 2.20050E-03 2.20057E-03 3.31402E-05
125 1.40466E-06 2.19182E-03 2.19197E-03 6.73532E-05
150 9.75461E-07 2.18648E-03 2.18665E-03 8.04663E-05
175 7.16665E-07 2.18290E-03 2.18308E-03 8.45194E-05
200 5.48697E-07 2.18036E-03 2.18054E-03 8.39233E-05
225 4.33538E-07 2.17848E-03 2.17865E-03 8.16584E-05
250 3.51166E-07 2.17703E-03 2.17720E-03 7.84397E-05
275 2.90220E-07 2.17589E-03 2.17606E-03 7.47442E-05
300 2.43865E-07 2.17498E-03 2.17513E-03 7.12872E-05
325 2.07791E-07 2.17422E-03 2.17437E-03 6.79493E-05
350 1.79166E-07 2.17360E-03 2.17374E-03 6.44922E-05
375 1.56074E-07 2.17307E-03 2.17320E-03 6.13928E-05
400 1.37174E-07 2.17262E-03 2.17274E-03 5.84126E-05
425 1.21511E-07 2.17223E-03 2.17235E-03 5.57899E-05
450 1.08385E-07 2.17189E-03 2.17200E-03 5.32866E-05
475 9.72759E-08 2.17159E-03 2.17170E-03 5.09024E-05
500 8.77915E-08 2.17133E-03 2.17144E-03 4.86374E-05
525 7.96295E-08 2.17110E-03 2.17120E-03 4.67300E-05
550 7.25550E-08 2.17089E-03 2.17099E-03 4.48227E-05
575 6.63830E-08 2.17070E-03 2.17080E-03 4.29153E-05
600 6.09663E-08 2.17053E-03 2.17062E-03 4.12464E-05
625 5.61866E-08 2.17038E-03 2.17047E-03 3.98159E-05
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