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Abstract

This article considers the use of financial transmission rights for
managing electricity provision on a power grid. The use of a sub-
grid of hubs for dealing in these products is explored. Some suitable
approaches to this practice are outlined. These identify the feasible
size of sub-grid and locate additional constraints.
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1 Introduction

In an electricity pool market, all market participants simultaneously trade
electric power (at any one point in time) at prices which depend on their
locations. Such markets are in current use in power systems in North and
South America, the Nordic countries, Australia, and New Zealand. The
variation of electricity spot prices with location in these markets has resulted
in the development of market instruments to hedge the price differences. A
financial transmission right (ftr) is a typical such instrument: a contract
with a payoff to the holder which depends on the prices at various locations.
The most straightforward variety (known as an obligation ftr) has payoff
which is a linear combination of spot prices. Most commonly, this is simply a
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difference of the spot prices at two locations; the ftr is then effectively a swap
contract, exchanging power at the first location for an equal amount of power
at the second. Also popular are option ftrs, for which the payoff depends
nonlinearly on the spot prices; these can represent holding the option (but
not the obligation) to exchange power in one location for power in another.

ftrs were first proposed by Hogan [1], and have received plenty of atten-
tion under various names: they are called fixed transmission rights in the
Pennsylvania–Jersey–Maryland market, transmission congestion contracts in
New York, and financial congestion contracts in New England.

The payoffs of ftrs are funded by financial surpluses arising in the spot
market. Since these surpluses are of finite size, there are constraints on the
quantities of ftrs which are able to simultaneously exist. These constraints
are coupled across the various kinds of ftrs; they are collectively referred
to as the simultaneous feasibility test. It is this test which makes it possible
to award ftrs by an auction mechanism: the auctioneer may award any
ftrs they choose (for example to maximize the auction revenue) provided
the totality of all existing ftrs satisfies the test.

The problem proposed by Transpower for this misg arises from a proposed
ftr scheme in which the locations (or hubs) relevant to ftrs are only a small
subset of all the locations at which physical power is traded. Transpower
hoped that this situation would make it possible to formulate the simultaneous
feasibility test in a much simpler way than usual.

2 The New Zealand electricity network
context

Figure 1 shows a potential sub-grid of the New Zealand Electricity network.
This grid has seven nodes. Some of these are directly connected by electricity
transmission routes; others are only indirectly connected through other nodes.
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Figure 1: Seven-node subgrid

The Transpower representatives provided the misg study group with an excel
Dispatch and ftr simulator for the seven-node model shown in Figure 1.
This program when given a few ftr bids between pairs of nodes calculates
the ftrs to be awarded to the bidders.

The usage of power at individual nodes is governed by the physical flow of
electricity and the spot market for power. The underlying theory for this
is covered in Section 3. The proposed ftr market will be placed onto this
existing system. ftr theory is covered in Section 4.

In practice the misg group began with mixed levels of knowledge of the
electricity market. However, progress was made by considering simple cases
both with theory and experiments using the Transpower simulator program.
The description of the investigation begins in Section 5.
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3 Physical flow and the spot power market

Consider an electric power system comprising a collection N of nodes (lo-
cations) connected by a collection of L transmission lines. Let τn(f) denote
the net power imported via the transmission system to node n ∈ N, when
f = (f`)`∈L is the vector of line flows. If the lines are lossless, then the τn are
linear functions:

τn(f) =
∑

`:ν1(`)=n

f` −
∑

`:ν0(`)=n

f`,

where ν0(`) and ν1(`) are the endpoints of `, and f` is taken to be positive in
the direction from ν0(`) to ν1(`).

If it is required to model line losses, then nonlinear τn are used. A physically
realistic choice is a quadratic loss ρ`f2` on each line:

τn(f) =
∑

`:ν1(`)=n

(f` −
1
2
ρ`f

2
`) −

∑
`:ν0(`)=n

(f` +
1
2
ρ`f

2
`).

Alternatively, the losses are often modelled as piecewise linear; this is conve-
nient for linear programming formulations.

The capabilities of the transmission system are represented by the requirement
f ∈ U. The setU incorporates the maximum capacities of individual lines, loop
flow constraints imposed by Kirchoff’s laws, and (typically, in practice) other
constraints related to contingencies (n− 1 security, or some approximation
thereof). We assume that U is a convex compact set with 0 ∈ U.

Given such a system, a pool market for power can be operated as follows.
A market operator (mo) is faced with a collection T of offers to supply or
consume electricity. Offer i ∈ T is for a tranche of quantity qi at a local
node ν(i); the mo must decide the quantity xi of this to accept. Both qi
and xi are taken to be positive in the sense of injecting power to the local
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node, so

xi ∈ Ci :=

{
[0,qi], if qi > 0 (supply-side offer),
[qi, 0], if qi 6 0 (demand-side bid).

(1)

Offer i also has an associated ask or bid price pi; this is taken to be positive
when the corresponding cashflow is opposite in direction to the energy flow
(which is usually the case). Inelastic demand is handled by setting pi = voll,
the value of lost load (a high price representing the cost of interrupting supply
to a consumer).

The mo’s problem is the following.

Problem 1.

min
∑
i∈T

pixi ,

such that τn(f) +
∑
i∈T(n)

xi = 0 for all n ∈ N,

xi ∈ Ci for all i ∈ T ,
f ∈ U .

Here T(n) = {i : ν(i) = n}. This is an optimization problem in the variables
x = (xi)i∈T and f. The problem is convex (that is, it involves minimizing a
convex function over a convex set) if the transmission lines are lossless, but
may be non-convex if losses are modelled. The most important constraints
are those requiring energy balance at node n (that is, τn(f)+

∑
i∈T(n) xi = 0).

The dual variable πn associated with such a constraint gives the marginal
cost of creating a small power surplus at node n; this marginal cost becomes
the spot price paid or received by market participants at node n whose offers
are accepted by the mo.

There is no expectation that the total payments by power consumers should
match the total paid to suppliers. Consumers and suppliers are likely to
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Figure 2: A network consisting of a single lossy line.

be in different locations, so will trade at different prices; furthermore, in a
lossy network some of the power supplied will be lost rather than consumed.
Philpott and Pritchard [2] show that provided all πn > 0, payments by
consumers exceed payments to suppliers by∑

n

πnτn(f
∗)

(where πn and f∗ are taken at optimality in Problem 1), and that this quantity
is non-negative; that is, no financial deficit can occur.

3.1 Example: the single line

Consider, for example, a network consisting of a single line connecting two
nodes A and B (Figure 2). The line has quadratic loss coefficient r and
capacity L, so that

τA(f) = −f−
1

2
rf2, τB(f) = f−

1

2
rf2 and U = {f : |f| 6 L} .

(The flow f is taken to be positive in the direction from A to B.) For definiteness,
take L = 100MW and r = 0.002MW−1, so that at maximum flow the
line must be fed 110MW at one end and will deliver 90MW to the other.
A supplier at A offers 200MW, asking price p1 = $10MW−1; a similar
supplier at B asks p2 = $20MW−1 for 200MW there. A consumer at B
demands DMW, and is willing to pay a price p3 well in excess of p1 and p2.
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Suppose first that D < 90 . Then the demand is met entirely by supply
from A and use of the transmission line: the flow f is such that f− rf2/2 = D,
the quantity supplied is x1 = f+ rf2/2, and the marginal costs are

πA = p1, πB = p1
dx1

dD
= p1

(
1+ rf

1− rf

)
(since dx1

dD
= dx1

df
/dD
df
). The consumer pays DπB, the supplier is paid x1πA, and

there is a market surplus equal to

DπB − x1πA =
p1rf

2

1− rf
.

Note that as D increases from zero to 90MW, the spot price πB increases
from $10MW−1 to $15MW−1 due to the ever-worsening line losses, while the
market surplus increases from zero to $250.

Second suppose that D > 90 . In this case both suppliers must be called upon,
with x1 = 110, f = 100, and x2 = D−90. In this regime, the line is said to be
congested. The spot prices are πA = p1 and πB = p2, and the market surplus
is DπB − x1πA − x2πB = $700. Note that as D increases through 90MW,
both the spot price πB and the market surplus change discontinuously.

4 Financial transmission rights

A financial transmission right (ftr) is a contract with a payoff to the holder
which depends on the spot prices at various locations. An obligation ftr has
payoff which is a linear combination of spot prices:

∑
n∈N

hnπn (2)

for some coefficients (hn). In the case of a balanced obligation ftr, this is
simply a difference of the spot prices at two locations: πn2

− πn1
; the ftr
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is then effectively a swap contract, exchanging power at the first location
for an equal amount of power at the second. An unbalanced obligation ftr
is similar except that the quantities swapped are unequal: h2πn2

− h1πn1
;

these occur most often in the context of lossy networks. All the varieties of
obligation ftrs sometimes have negative payoff: that is, they may result in a
cost to the holder.

An option ftr has payoff: (∑
n∈N

hnπn

)
+

(where x+ denotes max(x, 0)). In particular, the payoff is always non-negative,
which is a simplifying property from a financial perspective.

In the usual market design, the payoffs of financial transmission rights are
funded from the surplus that arises in the spot market. This means that
it is necessary to limit the quantities of ftrs in existence to ensure that
this surplus will be adequate to fund them (revenue adequacy). Where only
obligation ftrs are present, the collection of extant ftrs are superposed to
produce a single ftr of the form (2); the revenue adequacy requirement is
then ∑

n∈N

πnhn 6
∑
n

πnτn(f
∗),

where the right-hand side is the spot market surplus discussed in Section 3.

A basic result in the theory of ftrs [1, 2] states that a sufficient condition
for revenue adequacy in this case is the so-called simultaneous feasibility
condition: the hn should represent offtakes (or injections) which are feasible
for the transmission network. In the notation of the last section, there should
exist f ∈ U with τn(f) = hn for each n.

Where option ftrs are present, revenue adequacy becomes more onerous
to check. One considers all possible ways in which the extant option ftrs
may or may not pay off, and checks that in each case, the simultaneous
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feasibility condition remains satisfied when the collection of obligation ftrs
is augmented by those option ftrs with non-zero payoff.

Note that the payoffs of ftrs need not correspond directly to flows on
particular lines. For example, if an ftr’s payoff involves prices at two nodes,
and the network admits multiple paths between those nodes, then all paths are
relevant to the simultaneous feasibility condition, and to the payoffs achieved.

4.1 Example: the single line

Consider a single-line network similar to that in Section 3. An obligation ftr
(or superposed collection of several such) with payoff

hAπA + hBπB

satisfies the simultaneous feasibility condition if and only if

there exists f : |f| 6 L and {hA,hB} =
{
−f− rf2/2, f− rf2/2

}
. (3)

That is, hA and hB must represent offtakes (or injections, if negative) which
are feasible for the network.

In the case of a lossless line (r = 0), it is most natural to consider balanced
ftrs. For obligation ftrs only, the payoff would be of form

h0(πB − πA)

and the simultaneous feasibility condition reduces to |h0| 6 L . Suppose we
now add option ftrs with payoffs of form

hAB(πB − πA)+ and hBA(πA − πB)+ .

Exactly one of these options will pay off, so there are two cases to consider;
the simultaneous feasibility condition becomes

|h0 + hAB| 6 L and |h0 + hBA| 6 L .
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Figure 3: A network with three ftr trading hubs (A,B,C), and its ftr
equivalent network.

4.2 Financial transmission rights trading hubs

Realistic transmission network models are usually large, with hundreds or
thousands of nodes. It may be, though, that only a few of the nodes are
involved with ftr payoffs; we refer to these nodes as hubs or trading hubs.
The question considered for this misg is whether the simultaneous feasibility
condition can be simplified significantly when the hubs are few in number.

The simultaneous feasibility condition can be simplified significantly in some
cases. Consider, for example, the network shown in Figure 3. For the purposes
of the simultaneous feasibility test, there will never be any injections or offtakes
at nodes which are not hubs, and so the networks connecting A to B, B to C,
and A to C can each be replaced by a single electrically equivalent line. The
simultaneous feasibility test can thus be replaced by a simpler version of
itself on a triangular network with three nodes. The remainder of this article
considers similar simplifications for other kinds of networks.
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5 Initial investigations

We took the simplest lossless linear model for our investigations. Consider
first a grid with two hubs (Figure 4). The ftr payments relate to the
actual electricity price difference between the hubs A and B. However, the
redistribution of electric power is constrained by the finite capacity of the
power transmission lines between A and B. Denote by opAB the total quantity
of option ftrs accepted from A to B. Use obAB for the total quantity of
obligation ftrs from A to B. Likewise opBA and obBA are the option and
obligation ftrs in the opposite direction from B to A. We write

gAB = obAB − obBA , (4)
fAB = opAB + obAB − obBA (5)

= opAB + gAB , (6)

and similarly gBA and fBA. (Note gBA = −gAB.) Let the grid’s transmission
capacity from A to B be QAB. That is, QAB is the maximum value of x such
that there is a feasible flow on the grid with injection x at A, offtake x at B,
and no injections or offtakes anywhere else. Then the simultaneous feasibility
test (as in Example 4.1) is written

gAB 6 QAB , fAB 6 QAB . (7)

The first of these is redundant as for this two-hub case gAB 6 fAB as opAB
is always non-negative. There is a similar pair of relations in the opposite
direction

gBA 6 QBA , fBA 6 QBA . (8)

One set of relations will be relevant. That will be determined once we know
the spot prices at the hubs A and B and hence the direction of the flow.

Our aim is to write a similar set of constraints for a grid with more than
two hubs, allowing for balanced obligation and option ftrs (in both direc-
tions) between all possible pairs of hubs. These constraints need to include
interaction terms between the ftrs awarded between different hub-pairs.
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Figure 4: Obligation and option ftrs on a simple grid.

Figure 5 shows a three hub system. Flow of electricity from A (Auckland)
to B (Huntly) could be direct or it could be via C (Taupo). The grid capacity
from A to B (QAB) allows for all the different routes that the electricity could
take. However, there may also be an existing (or required) flow of electricity
from A to C. This constrains the quantity of electricity that can flow from A
to B via C. For the three-hub network there are twelve constraint inequalities,
one for each direction between each pair of hubs and for each of fAB and gAB.
For instance, for the case of flow between A and B, we have the relationship

fAB + X
AB
ACfAC + X

AB
BCfBC 6 QAB , (9)

where XABAC is the interaction term between the flows on AB and AC.

In principle there are inequalities for each combination of directions of potential
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Figure 5: Constraints due to capacity interaction relationships in a three-hub
network.

pairwise flow and for both fij and gij. However, again some of the inequalities
are redundant.

6 The size of the problem

Consider a larger network of N hubs labelled 1, . . . ,N. The grid capacity
between hubs i and j is denoted Qij.

Let Xijmn be the ratio for ij versus mn at the margin (sometimes called
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ij×mn). We define Xijij = 1 for all i, j.

Let all ftr bids be indexed by the set B. The bid price for the ftr k is pk
per unit accepted, and the maximum amount required at that price is denoted
by Mk.

Let the indices for bids for product opij form the set I(opij). Similarly the
bids for obij are in the set B(obij).

The decision variable is xk, the quantity of bid k accepted. We also have
variables representing the total amount of each financial product accepted:
opij representing the total quantity of options between i and j; and obij
representing the total quantity of obligations between i and j.

We use surrogate variables fij and gij,

gij = obij − obji , (10)
fij = opij + obij − obji (11)

= opij + gij . (12)

Only variables gij for i < j are defined, and we use the relation gij = −gji
when i > j.

The objective function is then

maximise
∑
k∈B

xkpk . (13)

The first constraints ensure the amount awarded is no more than the amount
required

xk < Mk for all k . (14)
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We also define our f and g variables in terms of the decision variables.

gij =
∑

k∈I(obij)

xk −
∑

k∈I(obji)

xk for all i < j , (15)

fij =
∑

k∈I(opij)

xk + gij for all i < j , (16)

fij =
∑

k∈I(opij)

xk − gji for all i > j . (17)

We need to ensure that the total quantities do not exceed the allowed limits.
Let π be a permutation of the ordering of the hubs. Let πi be the ith hub in
the permutation. We have the following constraints repeated for each possible
permutation π: ∑

m<n

X
πiπj
πmπnfπmπn 6 Qπiπj for all i < j , (18)

gπiπj +
∑
m<n
except

m=i,n=j

X
πjπi
πmπnfπmπn 6 Qπjπi for all i < j . (19)

There are also the non-negativity constraints

fij > 0 and xk > 0. (20)

Note that the g variables are not restricted in sign.

The size of the problem can be calculated. The f and g variables and
constraints of the form of equations (18) and (19) grow the quickest. These
numbers are shown below. The size of the constraint matrix is (number of
variables) × (number of constraints), and is an indication of the size of the
linear program. As a general indication, problems of size up to 107 are often
solved successfully. We see from the table that this corresponds to problems
with six or seven hubs.
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Table 1: The size of the linear problem. (For greater than four hubs, the
number of constraints and variables × constraints are given to two significant
figures.)

Number of
Hubs

Number of
f,g Variables

Number of
Constraints

Variables ×
Constraints

2 3 2 6

3 9 24 216

4 18 216 3, 888
5 30 1.9×103 5.7×104
6 45 1.8×104 8.1×105
7 63 1.8×105 1.1×107
8 84 2.0×106 1.7×108
9 108 2.3×107 2.5×109
10 135 2.9×108 4.0×1010
11 165 4.0×109 6.6×1011
12 198 5.8×1010 1.1×1013

7 Extra constraints on sub-nodal systems

In addition to the constraints described in the last section, there may be
further constraints on a large system. Consider the network in Figure 6. In
this network

fAC 6 2 , fBC 6 2 , XABAC = 0 ; (21)

however,
fAC + fBC 6 3 < 2+ 2 . (22)

Expression (22) is a new constraint which does not appear among those
considered in Section 6. To see this, note that those constraints all have
right-hand sides which are pairwise transfer capacities Qij. In this network,
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Figure 6: A network which cannot be simplified.

QAB = QBC = QAC = 2 but in expression (22) we have a constraint with
right-hand side 3.

8 Simultaneous transfer experiments

In a lossless grid for which the Problem 1 of Section 3 can be set up and solved,
it is possible to explore experimentally the limits of simultaneous feasibility.
For example, suppose that we have three hubs A, B and C, and wish to
determine the set K of feasible pairs (fAB, fAC) in the plane. A point (x,y)
belongs to K if and only if there is a flow on the network with injection x+ y
at A, offtake x at B, and offtake y at C; for a particular (x,y) this is tested
numerically by solving Problem 1.

We considered such an example on the seven-node grid shown in Figure 1,
for simultaneous transfers Haywards–Auckland and Haywards–Napier. Since
Problem 1 (in the lossless case) is a linear programming problem, the feasible
set K is a polygon in the plane. The boundary of this polygon is determined in
the following way. Suppose Problem 1 is set up with an infinite supply of zero-
cost power at Haywards, a consumer bidding pA per unit at Auckland, and
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Figure 7: The polygon of constraints for Haywards–Auckland and Haywards–
Napier transfers.

another consumer bidding pN per unit at Napier. The optimal solution will be
to supply the two consumers with as much power as possible, subject to the
transfer limits of the grid and the relative values of their bids. The resulting
flow will be a superposition of transfers x from Haywards to Auckland and
y from Haywards to Napier, solving the problem

max{pAx+ pNy : (x,y) ∈ K}.

Thus, solving the problem determines a point on the boundary of K. By
varying the relative values of pA and pN, we trace out all the vertices of K.
This was done experimentally using the Transpower-provided excel Dispatch
and ftr simulator (Section 2) to produce Figure 7.

The polygon in Figure 7 is symmetric about the origin ((x,y) ∈ K ⇐⇒
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Figure 8: The polyhedron of constraints for Haywards–Auckland, Haywards–
New Plymouth, and Huntly–Auckland transfers.

(−x,−y) ∈ K). This symmetry is because all the transmission lines in this
grid have the same capacity in both directions, so that any feasible flow can
be reversed, giving another feasible flow.

Figure 8 shows the result of a similar experiment in which there are three
simultaneous transfers being considered: Haywards to Auckland, Haywards to
New Plymouth, and Huntly to Auckland. The procedure followed is much the
same, resulting in a feasible set which is a polyhedron in three-dimensional
space.

Through this mechanism the feasible solution space is constructed for the
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lossless (linear) system, and an optimum is searched for within. Higher
dimensional polyhedra would be required when there are larger numbers of
links being considered (one for each link). For the lossy system the approach
would be complicated by the sides and edges of the polyhedra being curved.

9 Discussion and conclusions

The context and work completed on the Transpower problem at the 2012 misg
study group is described. This considered the use of Financial Transmission
Rights (ftr) in the context of the New Zealand Electricity Power Grid. In
particular, the effectiveness of using a simplified sub-grid of the network for
the bidding process is assessed.

The existing operation of the power grid and the mechanism for spot pricing
is described. Then the general approach for pricing ftrs is considered. The
results of the investigations is described. First a set of constraints is identified
that must be satisfied by a simple network with all significant line junctions
located at the selected hubs. The system appeared manageable for systems of
six or seven hubs. The existence of extra constraints when there are significant
line junctions between hubs is then considered. We described an experimental
approach for identifying these.

The approach of using a small sub-grid of key hubs to involve in the trading
of ftrs appears to be reasonable. Its use will simplify the financial process.
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