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Thin plate spline interpolation on an annulus

David R. Jenkins∗

(Received 7 August 2000)

Abstract

This work demonstrates a method for surface interpolation on an
annulus, with the additional constraint that the surface and its nor-
mal derivatives are specified on the annulus boundaries. The method
is based on a truncated Fourier series solution to the homogeneous
biharmonic equation, combined with Green’s functions for the point
interpolations. The formulation and solution approach is particularly
suitable for the annulus geometry because the boundaries are circles,
meaning that the boundary constraints are functions of the angle θ
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only, and they can be approximated by a truncated Fourier series.
The result is that the interpolation method is effectively gridless. The
matrix problem resulting from this formulation is highly structured
and can be solved in a simple sequential manner. We present results
for some test problems to illustrate the effect of the truncation of the
Fourier series on the solution and on aspects such as the condition of
the matrix problem.
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1 Introduction

Suppose that one wishes to find a function that interpolates a set number of
points in a finite region of two-dimensional space, and also satisfies conditions
on the function and its normal derivative at the boundaries of the region. A
desirable feature of such an interpolation function is that it be smooth, in
some sense. Suppose, further, that the region of interest is an annulus. Such
a situation arose in a recent industrial contact.

A common approach to smooth interpolation in two-dimensions is the
so-called “thin-plate spline”. A good description of thin-plate spline inter-
polation is given by Green & Silverman [2]. They discuss the application
of thin-plate splines in the case where boundary domains are ignored. In
many cases, the representation of the interpolating function is only of inter-
est within the convex hull of the interpolation points. In the thin-plate anal-
ogy, this is equivalent to a plate which extends to infinity. Dyn & Levin [1]
and Stone [4] have considered the effect of finite domain boundaries, by ap-
plying “natural” boundary conditions that arise from the thin-plate spline
formulation. In the plate analogy, this is equivalent to a finite plate that is
“free” or unconstrained along its edges. In our case, where we want to define
conditions on the function and its normal derivative at the boundaries, the
appropriate analogy is of a finite plate which is “clamped” around its edges.
We have been unable to find any published information on such a problem.

The annular geometry is interesting in its own right, because it has an
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internal boundary as well as an external one. The work of Stone [4] and
most other papers on surface interpolation (see Hegland et al [3], Wessel &
Bercovici [5] for recent examples) only consider simple polygonal domains,
but the internal boundary allows for a wider set of basis functions for the thin-
plate spline. The other useful feature about an annulus is that its boundaries
are circles, and its geometry lends itself to simple representations of solutions
to the biharmonic equation, which is fundamental to the development of thin-
plate spline solutions.

2 Development of solution

We want to develop a smooth surface

z = f(x), (1)

in R2, defined on the annulus Ω,

Ω = {x | x = (r, θ), r1 ≤ r ≤ r2} (2)

that interpolates a set of M points

{xm = (rm, θm), m = 1, . . . , M | r1 < rm < r2, f(xm) = zm}

in a smooth fashion.
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In addition, the surface must satisfy conditions on the annulus boundaries
of the form

f(ri, θ) = Fi(θ) , i = 1, 2 (3)

∂f

∂r

∣∣∣∣∣
r=ri

= Gi(θ) , i = 1, 2 (4)

One such surface that does this is the so-called thin-plate spline, which
minimises the functional

J(f) =
∫
Ω
{f 2

xx + 2f 2
xy + f 2

yy}dx

subject to the constraints

f(xm) = zm, m = 1, . . . , M. (5)

This is equivalent to finding the solution of the inhomogeneous biharmonic
equation

∇4f +
M∑

m=1

λmδ(x − xm) = 0 . (6)

Now the Green’s function solution for the biharmonic equation

∇4G(x) = δ(x − x0) (7)

is

H(x;x0) =
1

16π
‖x − x0‖2 log ‖x − x0‖2 .
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Given this solution, it is convenient to write the general solution to (3) as

f(x) = g0(x) +
M∑

m=1

λm [gm(x) + H(x;xm)] (8)

and then solve the homogeneous biharmonic equations

∇4gm = 0, m = 0, . . . , M (9)

with boundary conditions

g0(ri, θ) = Fi(θ), i = 1, 2
gm(ri, θ) = −Hm,i(θ), i = 1, 2, m = 1, . . . , M

∂g0

∂r

∣∣∣
r=ri

= Gi(θ) i = 1, 2
∂gm

∂r

∣∣∣
r=ri

= −Km,i(θ) i = 1, 2, m = 1, . . . , M

(10)

where

Hm,i(θ) = H(ri, θ;xm) , Km,i(θ) =
∂H(r, θ;xm)

∂r

∣∣∣∣∣
r=ri

.

We write the general solution for g0(r, θ) as

g0(r, θ)

= a00 + b00

(
r

r2

)2

+ c00 log
(

r1

r

)
+ d00

(
r

r2

)2

log
(

r1

r

)

+

[
a10

(
r

r2

)3

+ b10

(
r

r2

)
+ c10

(
r1

r

)
+ d10

(
r

r2

)
log

(
r1

r

)]
sin θ
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+

[
e10

(
r

r2

)3

+ f10

(
r

r2

)
+ h10

(
r1

r

)
+ k10

(
r

r2

)
log

(
r1

r

)]
cos θ

+
∞∑

n=2

[
an0

(
r

r2

)n

+ bn0

(
r

r2

)n+2

+ cn0

(
r1

r

)n

+ dn0

(
r1

r

)n−2
]

sin nθ

+
∞∑

n=2

[
en0

(
r

r2

)n

+ fn0

(
r

r2

)n+2

+ hn0

(
r1

r

)n

+ kn0

(
r1

r

)n−2
]

cos nθ

and for gm(r, θ), m = 1, . . . , M as

gm(r, θ) = a0m + b0m

(
r

r2

)2

+ c0m log
(

r1

r

)
+ d0m

(
r

r2

)2

log
(

r1

r

)

+

[
e1m

(
r

r2

)3

+ f1m

(
r

r2

)

+ h1m

(
r1

r

)
+ k1m

(
r

r2

)
log

(
r1

r

)]
cos(θ − θm)

+
∞∑

n=2

[
enm

(
r

r2

)n

+ fnm

(
r

r2

)n+2

+ hnm

(
r1

r

)n

+ knm

(
r1

r

)n−2
]

cos n(θ − θm)

The above equations are scaled in such a way as to ensure that the terms in-
volving r remain bounded as n → ∞, and the coefficients themselves remain
bounded. It also turns out that this scaling ensures that the conditioning of
the matrix problems to be solved remains reasonable, even for quite large val-
ues of n. Note that only cosine terms are required for the gm’s, as described
below.
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The infinite series is truncated at a finite value, n = N , in order to obtain
an approximation to the true thin-plate spline solution. For g0 we then need
to determine 8N + 4 coefficients, while for the other gm’s we need 4N + 4
coefficients.

The coefficients in the solution for each of the gm are obtained by evalu-
ating the boundary conditions (10). In order to do this, we need a Fourier
decomposition of the fundamental solutions, Hm,i(θ) and their radial deriva-
tives, Gm,i(θ). In terms of r and θ we write

‖x − xm‖2 =
r2 + r2

m − 2rrm cos(θ − θm)

r2
2

where distances are scaled with r2. Hence Hm,i(θ) and Gm,i(θ) are even
functions of θ − θm, so the Fourier decomposition in θ can be evaluated as
a cosine series in θ − θm. The most straightforward way to do this is via
a Fast Fourier Transform. The first N coefficients of the Fourier series are
required, so the functions are evaluated at the N equispaced points on the
θ − θm interval [0, 2π), defined by

θk − θm =
2(k − 1)π

N
, k = 1, . . . , N

and the fft cosine transform directly yields the Fourier coefficients. The
accuracy of the results is affected by aliasing, so N must be made sufficiently
large that all the “power” of the function is accounted for.

Of course, we also need a Fourier decomposition of the boundary condition
functions Fi(θ) and Gi(θ). In general, these will not be even functions of θ, so
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the full fft is required, necessitating evaluation of these functions at 2N +1
equispaced points on the interval [0, 2π).

For each gm, and at each frequency in the Fourier series, the 4 boundary
conditions of equation (10) yield a 4 × 4 matrix problem to be solved. The
matrices are the same for all of the gm’s, so only N + 1 4 × 4 matrices need
to be inverted, and all the coefficients for all the gm’s can be evaluated by
multiplication with the appropriate right hand side vectors, obtained from
the cosine transforms described above. This is a very simple and efficient
procedure.

An interesting point is that the coefficients of the gm’s will be the same
for all points that have the same value of r. So, if the interpolation points
are located on a set of concentric circles, the coefficients only need to be
evaluated for one point on each circle. This gives the potential to increase
the efficiency even further.

The parameters λm, m = 1, . . . , M are then evaluated by ensuring that
the function interpolates all the M points. This can be written as the set of
equations

M∑
m=1

λm [gm(xl) + H(xl;xm)] = zl − g0(xl) , l = 1, . . . , M (11)

which is a matrix equation, which we write as

(G + H)λ = z − g0 (12)
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The matrix H is symmetric, but G is not. In this study, we have not taken
any special care about the numerical solution of equation (12), since we
are only interested in moderate values of M (of order of 1000, say). Thus,
standard linpack routines using Gaussian elimination with pivoting provide
satisfactory solutions.

The advantage of the formulation used here is that the determination of
the λm’s is de-coupled from the coefficients required for the solutions of the
homogeneous biharmonic equations. This means that the largest matrix to
be inverted is the matrix G + H and this is a relatively well conditioned
matrix. It is possible to obtain a solution in a way that couples the two sets
of problems together, but this results in the solution of a much larger matrix,
whose conditioning deteriorates as N increases.

3 Interpolation on a circle

A natural development of the method is to remove the inner boundary so
that the geometry is now a circle. The existing method is easily modified for
interpolation on a circle, by removing the boundary conditions at r = r1 and
then modifying the general solution for the functions gm so that they and
their first and second derivatives remain finite at r = 0. The solutions then
take the form:

g0(r, θ) = a00 + b00

(
r

r2

)2

+
∞∑

n=1

[
an0

(
r

r2

)n

+ bn0

(
r

r2

)n+2
]

sin nθ
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+
∞∑

n=1

[
en0

(
r

r2

)n

+ fn0

(
r

r2

)n+2
]

cos nθ

gm(r, θ) = a0m + b0m

(
r

r2

)2

+
∞∑

n=1

[
enm

(
r

r2

)n

+ fnm

(
r

r2

)n+2
]

cos n(θ − θm)

so there are only half as many coefficients for the gm’s to evaluate. They are
evaluated in exactly the same way as before, but only boundary conditions
at r = r2 need to be satisfied. This means that only 2 × 2 matrices need to
be inverted, which can be done explicitly.

4 Examples

For the annulus geometry, we use the function

f(r, θ) = (r − r1)
2(r2 − r)2θ(2π − θ)(π − θ) (13)

as a simple test function. Notice that

f(r1) = f(r2) =
∂f

∂r

∣∣∣∣∣
r=r1

=
∂f

∂r

∣∣∣∣∣
r=r2

= 0

and so
g0(r, θ) = 0.
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We test the interpolation using the above method by randomly locating M
points on the domain and doing the interpolation with a fixed value of N .

Figure 1 shows results for r1 = 0.5, r2 = 1 and M = 100 with N =
8, 16, 32 and 64. The plots show that the function is well represented at
internal points for N as small as 16, but that near the boundary the function
shows considerable variation until N is quite large (greater than 32). So the
choice of an appropriate value of N appears to be controlled by the ability
of the method to satisfy the boundary conditions. In order to examine the
effect of varying N on the boundary conditions, we plot an estimate of the
error in the boundary condition on f at r = r2, given by the mean square
error quantity

E2 =
1

2π

∫ 2π

0
f(r2, θ)

2dθ

which can be evaluated numerically, and is plotted in Figure 2, for a range
of values of N .

This figure shows, as we would expect, a general decline in E as N in-
creases, but there is a lot of variation in E for low to moderate values of
N . The reason for this lies in the location of the interpolation points (see
Figure 1). There are a few of the 100 interpolation points that are very close
to the boundaries. Because of this, a large value of N is required to obtain
an accurate Fourier series representation of Hm,i(θ) and Km,i(θ). If N is cho-
sen to be too small, then aliasing will cause error in the Fourier coefficients,
which in turn cause error in the coefficients of the gm’s. The function will
still interpolate the interpolation points, but it will not satisfy the boundary
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Figure 1: Contour plots of the interpolation function on an annulus, with
r1 = 0.5, r2 = 1 and M = 100, for various values of N . The locations of the
100 interpolation points are shown by the dots on the N = 64 plot.
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Figure 2: Graph of E versus N for the annulus interpolation function, with
r1 = 0.5, r2 = 1 and M = 100.
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conditions and it will not be a particularly good representation of the surface
elsewhere. Of course, the effect of this type of error is non-local, due to the
nature of the series solution approach, so the only solution is to increase N .

For the circular geometry, we use the function

f(r, θ) = r(r2 − r)2θ(2π − θ)(π − θ) (14)

as a simple test function. In this case

f(r2) =
∂f

∂r

∣∣∣∣∣
r=r2

= 0

and so, again
g0(r, θ) = 0.

Figure 3 shows results for r2 = 1 and M = 100 with N = 2, 4, 6 and 8.
The results here appear to be somewhat better than for the annular example,
in that the boundary conditions are satisfied more closely for lower values of
N . A reasonably good surface is obtained for N = 8, and even the result
for N = 2 appears quite good. The functional form used here is, in some
sense, a less difficult test than the annular example, as it is flatter over a
larger range of r near the boundary than was the case for the annulus. Also,
the removal of the inner boundary means that there are no long range effects
of the aliasing in the Fourier coefficients of points located very close to the
inner boundary. This seems to make the outer boundary condition easier
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Figure 3: Contour plots of the interpolation function on a circle, with r2 = 1
and M = 100, for various values of N . The locations of the 100 interpolation
points are shown by the dots on the N = 8 plot.
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to satisfy. It is worth noting that Stone [4] found that N = 7 provided
reasonably accurate solutions to his finite domain interpolation problems,
and this accords quite well with the results here.

5 Conclusion

The method presented here provides a means of using the thin-plate spline
approach in situations where the function must conform to specified con-
ditions on the boundary of a circular or annular domain. Moreover, the
circular geometry is amenable to a neat formulation of the problem that can
be exploited for improving the efficiency of the numerical evaluation of the
interpolating surface. There is clearly more that can be done to improve the
numerical efficiency of the solution. In particular, no effort has been made
to develop efficient means of solving the matrix equation arising from the
interpolation conditions. This is not really necessary for the moderate sized
interpolation problems addressed here, but may well be necessary for larger
problems. Finally, although it has not been addressed here, the method
should be able to be adapted for the problem of finding a thin-plate spline
“smoothing” surface for noisy data, in the case when boundary conditions
are required.
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