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Note on porous rotating disk flow
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Abstract

We revisit the classical Kármán rotating disk problem. A series
analysis is used to derive estimates of boundary conditions at the sur-
face. Using these estimates, computed thermal and flow fields for large
mass transfer through the disk are readily obtained using a shooting
method. The relevance of the problem to practical flows is discussed
briefly.
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1 Introduction

The problem of flow over a rotating disk has a long history, with von Kármán
originally describing similarity transformations that enable the Navier-Stokes
equations for an isothermal, impermeable rotating disk to be reduced to
a system of coupled ordinary differential equations [10]. Subsequently, an
extensive literature has built up on this and closely related flows, especially
with regard to an apparent non-uniqueness of solutions of the governing
equations. For a review see Zandbergen & Dijkstra [12].
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In this work we re-examine the flow of a porous heated rotating disk, mo-
tivated by the view that this problem can serve as a prototype for practical
swirl flows. In combustors, for example, the swirl is often generated by a
fan or rotating honeycomb so that the upstream flow is close to solid-body
rotation with a nearly uniform axial velocity profile (see, e.g. [4]). A shooting
method is used to compute solutions to the resulting two-point asymptotic
boundary value problem, where estimates for the surface boundary condi-
tions are needed to initiate the iterative process. The dependence of the
computations on the latter is investigated, and for strong injection, we find
that the success of the procedure depends very sensitively on these initial
guesses. Thus, the purpose of this communication is to point out basic re-
sults relating to the flow and the numerical scheme. In the following, a
series solution is developed for mass transfer through the disk, and is com-
pared with existing analyses to obtain approximate boundary conditions for
high suction or injection. Thereafter, sample computations using the derived
boundary conditions are presented to demonstrate their efficacy, particularly
for high injection rates. Finally, the relevance of the results to practical flows
is discussed briefly.

2 Governing equations

Using cylindrical coordinates (r, φ, z), the disk rotates with angular velocity
Ω about the z-axis, and is at temperature θ0 compared with the ambient
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θ∞. Following von Kármán, a dimensionless normal distance from the disk,
ζ = z(Ω/ν)1/2 is introduced, along with the following representations for the
radial, tangential and axial velocities:

u = −1

2
ΩrW ′(ζ) , v = ΩrV (ζ) , w =

√
ΩνW (ζ) (1)

The Navier-Stokes equations reduce in this case to the coupled system

2W ′′′ − 2W ′′W + (W ′)2 − 4V 2 = 0 , V ′′ − V ′W + V W ′ = 0 (2)

The dimensionless radial velocity can be found, as needed, via the equa-
tion U = −W ′/2. Further, by introducing the dimensionless variable T (ζ) =
(θ− θ∞)/(θ0 − θ∞), the temperature distribution may be computed after the
velocity field via the reduced equation

T ′′ = Pr W T ′ (3)

where Pr is the Prandtl number.

For uniform suction (Ws < 0) or injection (Ws > 0) at the surface, the
appropriate boundary conditions are

ζ = 0 : V = T = 1 , U = 0 , W = Ws (4a)

ζ → ∞ : V = T = 0 , U = 0 (4b)

For computational purposes, the asymptotic boundary conditions are imple-
mented on a finite domain of cutoff length ζc.
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3 Analysis for Ws = 0

Cochran [2] obtained an early approximate solution to the coupled system
for the case of no suction or blowing (Ws = 0) via the matching of a power
series near ζ = 0 with an asymptotic series valid for ζ large. The leading
terms of the power series solution to (2) and (4a) valid near ζ = 0 are

V = 1 + bζ − a

3
ζ3 − 1 + ab

12
ζ4 − · · ·

W = aζ2 +
1

3
ζ3 +

b

6
ζ4 + · · ·

(5)

where a and b are constants.

For ζ large, formal expansions of the solution of (2) and (4b) can be found
in powers of e−cζ, where c is a constant. The latter describe flow drawn in
axially from infinity, consistent with the rotating disk acting as a kind of
centrifugal fan. The leading terms are

V = Be−cζ − B(A2 + B2)

12c4
e−3cζ + · · ·

W = −c +
2A

c
e−cζ − A2 + B2

2c3
e−2cζ +

A(A2 + B2)

6c5
e−3cζ + · · ·

(6)

where A and B are constants. The values (as determined by Cochran) are

a = −0.510 , b = −0.616 , c = 0.886 , A = 0.934 , B = 1.208 . (7)
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4 Analysis for Ws 6= 0 and ζ small

To find estimates for the surface boundary conditions when Ws 6= 0, the series
for V and W given in (5) can be modified to include suction or injection.
We begin by assuming the following expansions, which satisfy the boundary
conditions at ζ = 0, namely

V = 1 +

∞∑

n=1

bnζn , W = Ws +

∞∑

n=2

anζn (8)

where an and bn are constants. Note that a1 = 0 is required for the no-slip
condition at the disk. The series (8) can be substituted into (2) to obtain
the following. For brevity, only the first few terms are given subsequently.

V = 1 + b1ζ +
b1Ws

2
ζ2 +

2 − 6a3 + b1Ws
3

6Ws
ζ3

+
2Ws − 12a3Ws + 2b1 + b1Ws

4 − 6a3b1

24Ws

ζ4 + · · ·

W = Ws +
−1 + 3a3

Ws

ζ2 + a3ζ
3 +

3a3Ws + 2b1

12
ζ4 + · · ·

(9)

Now there is a singularity at Ws = 0 in the above. To remove this we
assume that the preceding series for V and W are bounded for both small
ζ and for arbitrary amounts of suction or blowing through the surface. In
particular, we require them to yield the corresponding series solution for
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Ws = 0, equation (5), in the limit Ws → 0. With these points in mind
we consider (9) in the limit of no suction or injection. By a term by term
comparison with (5), it follows that

lim
Ws→0

−1 + 3a3

Ws

= a , lim
Ws→0

a3 =
1

3
, lim

Ws→0

3a3Ws + 2b1

12
=

b

6
, . . . (10)

A solution to the above is

a3 =
1 + aWs

3
, b1 = b (11)

and substituting into (9), the following expressions for the tangential and
axial velocities are obtained which are valid for ζ small:

V = 1 + bζ +
bWs

2
ζ2 +

−2a + bWs
2

6
ζ3 +

−2 − 2ab − 4aWs + bWs
3

24
ζ4 + · · ·

W = Ws + aζ2 +
1 + aWs

3
ζ3 +

2b + Ws + aWs
2

12
ζ4 + · · ·

(12)

For Ws = 0, (12) is identical to (5), so the above expressions represent the
more general form of (5) to include suction or injection. Further, when |Ws|
is large, it is possible to get approximate closed form expressions for (12) by
retaining only the highest term in each coefficient. In this case, we obtain

V ≈ 1 +
b

Ws

(
eWsζ − 1

)

W ≈ Ws +
2a

W 2
s

(
eWsζ − 1 − Wsζ

) (13)
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Equation (13) suggests that Wsζ rather than ζ alone is a more suitable
independent variable for the problem with large mass transfer through the
disk. This observation suggests why in the work of Stuart [9], the ad-hoc
choice of scaling variable η = −Wsζ lead to a successful series expansion
analysis valid for ζ small and strong suction. After rewriting the governing
equations in terms of the new independent variable η, series solutions in
descending powers of Ws were sought, of the form

V =
∞∑

r=0

(−Ws)
−rVr(η) , W = Ws +

∞∑

r=0

(−Ws)
−rWr(η) (14)

where Wr and Vr are functions to be determined. The above is substituted
into the governing equations and successive powers of Ws are equated to zero.
A set of equations is obtained for the functions Wr and Vr that can be solved
for with the appropriate boundary conditions at η = 0 and ∞. The leading
terms are

V = e−η +
1

12W 4
s

(
e−η − 6ηe−η − e−3η

)
+ O(W−8

s )

W = Ws +
1

2W 3
s

(
1 − 2e−η + e−2η

)
+ O(W−7

s )
(15)

Estimates for a and b, which respectively correspond to the conditions
W ′′(0)/2 and V ′(0) at the disk, can now be obtained by comparing Taylor
series expansions of the leading terms of Stuart’s series with the leading terms
of (12). Note that to get a non-zero estimate for a, the O(W−3

s ) term for W
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must be included. On comparing the corresponding expansions with (12) we
find that for strong suction the predicted values of the constants are

a =
1

2Ws

, b = Ws (16)

These estimates were also given by Sparrow & Gregg [8] using an argument
based on the assumption that for strong suction, W ≈ Ws everywhere.

For mass injection, the above approach fails because the resulting equa-
tions for Wr and Vr do not have a solution for Ws > 0. We instead consider
the work of Kuiken [5], who argued that for strong injection, the viscous
boundary layer would be increasingly blown away from the disk. To account
for the expected behaviour, the scaled variables used were, in terms of the
present non-dimensionalisation, η = R

1
2 ζ , f(η) = R

1
2 W (ζ) and g(η) = V (ζ),

where R = 1/W 2
s . Series solutions were constructed in ascending powers of

R for f and g (e.g. f = f0 + Rf1 + R2f2 + . . . ). To leading order, it was
found that

f0 = g0 = cos2(η) = 1 − η2 +
η4

3
+ · · · (17)

We can again expand Kuiken’s result and compare it with the leading
terms of (12) via a little algebraic manipulation, noting that the function
g1 (see [5]) must be included in the expansion for g to obtain a non-zero
estimate for b. We find that for strong injection, the values of the constants
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are

a = − 1

Ws
, b = − 2

W 3
s

(18)

The predicted estimates for the constants found here are in good agreement
with the numerical results presented below.

5 Numerical results

To check our analysis, solutions to equations (2) and (4) were computed
using a shooting method utilising a fourth order Runge-Kutta scheme with
Newton iteration to search for the values of V ′(0) and W ′′(0) at the surface.

The two-point non-linear boundary value problem given by (2) and (4) is
numerically equivalent to solving the non-linear system of equations

F(I) = [V (ζc; I), W
′(ζc; I)] = 0 (19)

where I = [V ′(0), W ′′(0)] and V (ζ ; I), W (ζ ; I) are solutions to the initial value
problem given by (2) and (4a). Equation (19) is solved subject to choosing
ζc large enough so that |V (ζc)| < ε and |W (ζ) − W (ζc)| < ε for all ζ > ζc and
a given ε > 0. To ensure that results with a prescribed accuracy of least five
significant digits could be reported, a number of preliminary computations
were performed in order to determine sufficiently small values for the stepsize
and the cutoff parameter ε.
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After solution of the velocity field, the temperature field was obtained by
solution of (3) subject to the relevant boundary conditions in (4), also using
a shooting method.

Key features of the solutions are given in Table 1. Also recorded in the
table are our estimated values for (ζc)min, the smallest domain length that
could be used to obtain results with the prescribed accuracy.

For strong suction (Ws � 0), the tabulated values of (ζc)min indicate that
accurate numerical solutions can be obtained on very short domains. When
computing these solutions, we also noted that the numerical scheme was very
stable, in that a final converged solution could be obtained using relatively
poor initial guesses for the surface boundary conditions required to initiate
the iterative scheme.

Thus, while the tabulated values of V ′(0) and W ′′(0) for Ws < −2 are
in excellent agreement with the estimated boundary conditions for strong
suction given in (16), the latter estimates are not really needed to obtain
solutions for Ws < −2 using the present method.

For strong injection, however, the situation is reversed. We found that the
success of the procedure for Ws > 0 depends very sensitively on initiating
the iterative scheme using increasingly accurate guesses for the boundary
conditions V ′(0) and W ′′(0). In addition, larger values of ζc were needed to
obtain solutions with the prescribed accuracy.

Thus, to successfully compute solutions for strong injection, the follow-
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Table 1: Characteristics of the solutions (Pr = 0.71)
Ws −W ′′(0)/2 −V ′(0) −T ′(0) −W (ζc) (ζc)min

8 0.124757 0.388547e-2 0.215304e-17 0.561486 40
7 0.142387 0.577836e-2 0.956098e-13 0.579452 45
6 0.165663 0.910681e-2 0.139705e-9 0.599445 40
5 0.197566 0.154706e-1 0.672820e-7 0.621706 35
4 0.243044 0.289211e-1 0.107326e-4 0.646457 30
3 0.309147 0.602893e-1 0.576744e-1 0.674195 30
2 0.398934 0.135952 0.110135e-1 0.707811 25
1 0.489481 0.302173 0.848848e-1 0.760731 25
0 0.510233 0.615922 0.325856 0.884477 20
-1 0.389569 1.175222 0.793048 1.260561 13
-2 0.242421 2.038527 1.437782 2.057726 8
-3 0.165582 3.012142 2.135585 3.018209 6
-4 0.124742 4.005180 2.842381 4.007771 5
-5 0.999187 5.002661 3.551223 5.003992 < 5
-10 0.050002 10.00033 7.100153 10.00050 < 5



5 Numerical results C849

0.05

0.1

0.15

0 2 4 6 8
Ws

0.2

0.4

0.6

0 2 4 6 8
Ws

(a) −V ′(0) (b) −W ′′(0)/2

Figure 1: Comparison of computed and estimated boundary conditions
V ′(0) and W ′′(0) for Ws > 0: (a) Computed value of −V ′(0) (�) compared
with −b = 1/W 3

s (− −); (b) Computed value of −W ′′(0)/2 (�) compared
with −a = 1/Ws (− −).

ing procedure was adopted. Computations were started using the derived
estimates for strong injection given in (18) on a small domain, and the com-
puted values at the disk were used as initial guesses for computations using
successively larger ζc until errors were reduced to the required levels.

A comparison of the computed and estimated boundary conditions V ′(0)
and W ′′(0) for injection (Ws > 0) is illustrated in Figure 1. For higher
injection rates, the derived estimates of the required boundary conditions
given in (18) are seen to be in very good agreement with the corresponding
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Figure 2: Velocity and Temperature profiles for different Ws.

computed values.

Finally, the computed velocity and temperature profiles for Pr = 0.71
(corresponding to air) and different rates of mass transfer through the disk
are shown in Figure 2. For strong suction, the axial velocity is nearly con-
stant, the radial velocity is very small, and the tangential velocity and tem-
perature decay rapidly away from the surface. The case of strong suction is
of less interest as a prototype for practical swirl flows, and we give only one
representative profile for Ws = −2. However, a number of profiles for injec-
tion are given in Figure 2, where the boundary layer is increasingly blown
away from the disk to form an interlayer between the injection and outer
flow regions, and the tangential velocity and temperature decay more slowly
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away from the surface.

Although not described above, another class of solutions could be ob-
tained using the present scheme, for all suction and injection rates consid-
ered here. The second class is due to the finite domain length, where the flow
near ζc is of the form W ∼ −(ζ − ζc)

2/ζc
2 and V = 0. For the impermeable

case, solutions of this type were discussed by Mellor et al. [7] in their study
of two-disk flows where the second disk is stationary and located at ζc. We
do not report details here, other than to note that our computations show
that this type of two-disk flow does in fact exist for a range of suction and
injection rates through the rotating disk, and can be obtained on a range of
domain lengths by using initial conditions that differ only slightly from those
needed for the single disk solutions.

We also note that in this work, no attempt was made to find any so-called
pathological inviscid hump solutions [11] that are known to exist for Ws = 0,
but do not appear to have been reported for non-zero mass transfer through
the disk. This highly numerically stiff class of solutions are characterised by
regions of large flow reversal outside the initial boundary layer, where the
peak velocities greatly exceed those found in the boundary layer itself, and
their physical realism is open to question.
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6 Discussion and conclusion

We have used here a series analysis to derive estimates of surface boundary
conditions for a rotating disk flow. Using these estimates, computed thermal
and flow fields for large mass transfer through the disk were readily obtained
using a shooting method.

As a prototype, the porous rotating disk flow would appear relevant to
aid understanding of certain practical flows such as axisymmetric flow in
combustors, particularly where the upstream flow conditions are close to
solid-body rotation with a nearly uniform axial velocity profile. In such
flows, breakdown to a region of recirculation or flow reversal downstream
of the concentrated vortex core flow may be present for moderate to large
swirl. In particular, in confined pipe flow, a number of experimental studies
(e.g. [1]) have observed that in some cases the recirculation zone is not highly
localised, but rather has a long “tail” of weak reverse flow that persists
far downstream of the front stagnation point, a phenomenon for which no
explanation has apparently been proposed to date. However, the porous
rotating disk flow with injection considered here has the right features of a
stagnation point and an outer reverse axial flow, which suggests the following
qualitative explanation. For pipe flow where the upstream conditions are due
to a confined rotating disk of finite radius with injection and sufficiently high
swirl, the flow may be expected to be geometrically similar over at least some
of the pipe radius, and the features as obtained here will be evident, including
weak backflow far downstream from the initial point of flow reversal. For
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this confined flow, mass conservation will necessitate that regions of forward
axial flow will be present, most likely near the pipe generators. The resulting
wall boundary layers will initially tend to grow and envelope the region of
flow reversal, but as the axial velocity decays downstream, the boundary
layer growth may be insufficient to impact upon the remaining geometrically
similar region of reverse axial flow near the pipe axis.

While no one definitive cause is known for why enclosed axisymmetric
vortex breakdown occurs (for a review of the main theories, see e.g. Lei-
bovich [6]), the idea that locally similar flow may be responsible does not
appear to have been advanced in previous studies, and the validity of this
idea is currently being investigated [3].
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